تنوع و تمایز ژنتیکی جنگلهای راش ایران

نوع مقاله : علمی- پژوهشی

نویسندگان

1 عضو هیات علمی، مؤسسه تحقیقات جنگلها و مراتع، تهران، ایران

2 بخش فیتولوژی، دانشگاه فنی زولن، اسلواکی

چکیده

جنس راش یکی از فراوانترین و از نظر اقتصادی مهمترین جنسهای درختان چوبی شمال ایران است. گوناگونی ژنتیکی Fagus orientalis Lipsky در 14 جمعیت راش ایرانی  در طول گستره پراکنش این گونه درختی در منطقه هیرکانی به‌وسیله مطالعات آنزیمی بررسی گردید. تنوع و تمایز ژنتیکی جمعیتهای راش با استفاده از 16 لوکوس آنزیمی در 10 سیستم آنزیمی شامل پراکسیداز (PX)، لوسین آمینو پپتیداز (LAP)، گلوتامات اکسالواستات ترانس آمیناز (GOT)، منادیون ردوکتاز (MNR)، ایزو سیترات دهیدروژناز (IDH)، مالات دهیدروژناز (MDH)، فسفو گلوکوز ایزومراز (PGI)، فسفو گلوکو موتاز (PGM)، شیکیمات دهیدروژناز (SKDH)، فسفو گلوکونات دهیدروژناز (6PGD) به‌وسیله الکتروفورز ژل نشاسته مطالعه شد. تکثر ژنتیکی (میانگین تعداد آللهای مشاهده شده: 55؛ میانگین تعداد آلل در لوکوس: 3/3 و درصد لوکوسهای پلی مورفیک: 100) و تنوع ژنتیکی قابل ملاحظه‌ای (تعداد آللهای مؤثر: 2/88 و هتروزیگوسیتی مورد انتظار: 0/191) یافت گردید. درمجموع 30 آلل نادر (با فراوانی کمتر از 5%) ردیابی شد. هیچ طرح مشخصی از تمایز ژنتیکی شناسایی نگردید، ولی نقص جزیی هتروزیگوتها در مقایسه با نسبتهای مورد انتظار هاردی – وینبرگ در عمده جمعیتها یافت شد.

کلیدواژه‌ها


عنوان مقاله [English]

Genetic diversity and differentiation of beech forests ‎in Iran

نویسندگان [English]

  • Parvin Salehi Shanjani 1
  • Ladislave Paule 2
  • Dushan Gömöry 2
1 Reseach Institute of Forests and Rangelands, Tehran, Iran
2 Member of scientific board, Technical University of zvoleu Slowakia.‎ ‎
چکیده [English]

Fagus is one of the most abundant and economically important genera of woody plants in north of Iran.
Genetic variation of Fagus orientalis Lipsky was investigated on 14 Iranian beech populations originating from the major part of distribution range of this tree species in Hyrcanian zone. Genetic diversity and differentiation of beech populations were studied using 16 isozyme Loci at 10 enzyme systems including: PX, LAP, GOT, MNR, IDH, MDH, PGI, PGM, SKDH and 6PGD, by starch gel electrophoresis. A considerable genetic multiplicity (observed number of alleles: 55, mean number of alleles per locus: 3.3 and percentage of polymorphic loci: 100) and diversity (effective number of alleles: 1.288 and expected heterozygosity: 0.191) were found. Overall, 30 rare alleles (less than 5 % of the allelic frequency) were detected. No unequivocal patterns of genetic differentiation could be identified. A slight deficiency of heterozygotes as compared with Hardy-Weinberg expected proportion, was found in the majority of populations.

کلیدواژه‌ها [English]

  • Fagus orientalis Lipsky
  • Hyrcanian zone
  • Genetic diversity
  • ‎differentiation and Isozyme‏
1- ثابتی، ح. 1355. جنگلها، درختان و درختچه‌های ایران. سازمان تحقیقات کشاورزی و منابع طبیعی، 810 صفحه.
2- رسانه،‌ ی.، مشتاق، م. ح.، و صالحی، پ.، 1380. بررسی کمی و کیفی جنگلهای شمال کشور. مجموعه مقالات همایش ملی مدیریت جنگلهای شمال و توسعه پایدار. ص: 55-79.
3- صالحی شانجانی، پ.، 1381. تنوع ژنتیکی راش شرقی و ارتباط آن با برخی ویژگیهای فیزیولوژیکی، بیوشیمیایی و مورفولوژیکی راش در راشستان‌های ایران. رساله دکتری دانشکده علوم، دانشگاه تربیت معلم تهران، ایران. 206 صفحه.
4- Barrett, S. C.H. and Shore, J. S., 1990. Isozyme variation in colonizing plants. In : Soltis, D. E. and Soltis, P. S. (Eds). Isozymes in Plant Biology. Chapman and Hall, London. 280 p.
5- Barrière, G., Comps, B., Comps, B., Cuguen, J., N’Tsiba, F. and Thiebaut, B., 1985. The genetical ecological variability of beech (Fagus sylvatica  L.) in Europe. An alloenzymatic study: genetic isolations of beech-woods. In: Muhs H. J. (Eds). Improvement and Sylviculture of Beech. Mitteilungen der Bundesforschngsanstalt für Forestwirtschaft. Grosshansdorf. 24-50.
6- Belleti, P., and Lanteri, S., 1996. Allozyme variation among European beech (Fagus sylvatica L.) stands in Piedomont, north western Italy. Silvae Genetica, 45: 1-4.
7- Bergmann, F., Gregorius, H. R., and Larsen, T. B., 1990. Levels of genetic variation in European Silver fir (Abies alba). Silvae Genetica, 82: 1-10.
8- Brown, A. H. D., and Weir, B. S., 1983. Measuring genetic variability in plant populations. In: Tanksley, S. D. and Orton, L. (Eds.). Isozymes in Plant Genetics and Breeding, part A, Elsevier, Amstredam. pp. 219-239.
9- Burgess, P. F., 1982. Research in Regeneration of Hyrcanian Forests. Publication of Research Institute of Forests and Rangelands. 31, 68 p.
10- Cockerham, C. C., 1969. Variance of gene frequencies. Evolution, 23: 72-84.
11- Cockerham, C. C., 1973. Analysis of gene frequencies. Genetics, 74: 679-700.
12- Comps, B., Letouzey, J., and Savoie, J. M., 1987. Phenologie du couvert arborescent dans une chênaie- hêtraie d’ aquitaine. Ann. Sci. For., 44: 153-170.
13- Comps, B., Thiebaut, B. Paule, L., Merzeau, D., and Letouzey, J., 1990. Allozymic variability in beech woods (Fagus sylvatica L.) over central Europe: spatial differentiation among and within populations. Heredity, 65: 407-417.
14- Comps, B., Thiebaut, B., and Merzeau, D., 1991. Genetic variation in European beech stands (Fagus sylvatica L.). In: Müller-Starck, G., and Ziehe, M. J. D. (Eds). Genetic Variation in European Populations of Forest Trees. Sauerlander’s Verlag, Frankfurt, Germany. 110-124.
15- Comps, B., Thiebaut, B., Sugar, I., Trinajstic, I. and Plazibat, M., 1993.Genetic variation of Croatian beech stands (Fagus sylvatica L.): spatial differentiation in connection with the environment. Annales des Sciences Forestières, 48: 15-28.
16- Crow, J. F. and Kimura, M., 1970. An Introduction to Population Genetics Theory. Harper and Row, New York, Evanston, London. 109 p.
17- Cuguen, J., 1986. Différenciation génétique inter- et intrapopulationsďun arbre forestier anémophile: le cas due Hêtre (Fagus sylvatica L.). Diplôme de Doctorat de ľ Université des Sciences et Techniques du Languedoc, 96 pp. et annexes 75 pp.
18- Cuguen, J., Merzeau, D., and Thiebaut, B., 1988. Genetic structure of the European beech stand (Fagus sylvatica  L.): F statistics and importance of matting system characteristics in their evolution. Heredity, 60: 91-100.
19- Degen, B. and Scholz, F., 1998. Spatial genetic differentiation among populations of European beech (Fagus sylvatica L.) in western Germany as identified by geostatistical analysis. Forest Genetics, 5(3): 191-199.
20- Goncharenko, G. G., Silin, A. E., Padutov, V. E., 1994. Allozyme variation in Natural populations of Eurasian pines. III: Population structure, diversity, differentiation and gene flow in central and isolated populations of Pinus sylvestris L. in eastern Europe and Siberia. Silva Genetica, 43(2-3): 119-132.
21- Gömöry, D., Vyšny, J., Comps, B. and Thiébaut, B., 1992a. Geographical patterns of genetic ifferentiation and diversity in European beech (Fagus sylvatica L.) populations in France. Biológia (Bratislava), 47: 571-579.
22- Gömöry, D., Vyšny, J. ,Paule, L., and Comps, B., 1992b. Genetic structure of European beech (Fagus sylvatica L.) populations in Czecho-Slovakia. In: Proceedings of the International Conference “ Fytotechnica a Hospodarska Uprava Lesov v Sucasnych Ekologickych Podmienkach, Technicka Univerzita, Zvolen. 27-33.
23- Gömöry, D., Vyšny, J. ,Paule, L., 1995. Genetic differentiation of populations in the transition zone between Fagus sylvatica L. and Fagus orientalis Lipsky. In: Madsen, S. (Ed.) Genetic and Silviculture of Beech. Proceeding of the 5th Beech Symposium of the IUFRO Project Group P 1.10.00, 19-24 September 1994, Mogenstrup, Denmark. Forskningsserien, 11: 238-244.
24- Gömöry, D., Shvadchak, I. and  Paule, L., 1996. Genetic diversity and differentiation of beech populations in Ukraine and adjacent regions. In: Paule, L., Shvadchak, I. and Gömöry, D. (Eds). VIth IUFRO Beech Symposium, Arbora Publisher, Zvolen.
25- Gömöry, D., Tomović, Z., and Paule, L., 1998a. Genetic structure of beech-woods in Serbia as revealed by isozyme gene markers. Russian Journal of Forestry, 2: 15-25.
26- Gömöry, D., Shvadchak, I., Paule, L. and Vyšny, J., 1998b. Genetic diversity and differentiation of beech populations in Crimea. Russian Journal of Forestry, Vol. 34, No.1: 63-70.
27- Gömöry, D., Paule, L., Brus, R., Zhelev, P., Tomovic, Z., and Gracan, J. 1999. Genetic structure and Taxonomy of beech on Balkan Peninsula. J. Evol. Biol., 12: 746-754.
28- Gower, J. C., 1960. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53: 325-338.
29- Gregorius, H.R., 1978. The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math Biosci., 41: 253-271.
30- Hamrick, J. L., Linhart, Y. B., and Mitton, J. B., 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst., 10:173-200.
31- Hamrick, J. L., and Godt, M. J. W. 1990. Allozyme diversity in plant species. In: B. brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant population genetics, breeding and genetic resources. Sinauer Assocates Inc., Sunderland, Massachusetts. USA.
32- Hamrick, J. L., and Godt, M. J. W., 1990. Allozyme diversity in plant species. In: B. brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding and Genetic Resources. Sinauer Assocates Inc., Sunderland, Massachusetts. USA.
33- Hamrick, J. L., Godt, M. J. W., and Sherman-Broylers, S. L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests, 6: 95-124.
34- Hattemer, H. H., Starke, R. and Ziehe, M., 1993. Changes of genetic structures in beech populations. In: Muhs, H.-J. and Wuehlich, G. V. (Eds) The Scientific Basis for the Evolution of Forest Genetic Resources of beech. Working Document of the EC, Brussels. pp. 233-248.
35- Hazler, K., Comps, B., Sugar, I., Melovski, L., Tashev, A. and Gracan, J., 1997. Genetic structure of Fagus sylvatica  L. populations in southeastern Europe. Silvae Genetica, 46(4): 58-98.
36- Jensen, T. S., 1985. Seed-predator interactions of European beech, Fagus Sylvatica L. and forest ridents, Clethrionomus glareolus and Apodermus flavicollis. Oikos., 44: 149-156.
37- Johnson, W. C. and Adkisson, C. S., 1985. Dispersal of beech nuts by blue jays in fragmented landscapes. Am. Midl. Nat., 113: 319-324.
38- Kim, Z. S., 1980. Veränderung der genetischen Struktur von Buchenpopulationen durch Viabilitätsselektion im Keimlingsstadium. Göttingen Research Notes in Forest Genetics, 3: 1-84.
39- Kirby, G.C. 1975. Heterozygote frequencies in small subpopulations. Theor. Pop. Biol., 8: 31-48.
40- Konnert, M., 1995. Investigation on the genetic variation of beech (Fagus sylvatica L.) in Bavaria. Silvea Genetica, 44(5-6): 346-351.
41- Lagercrantz, U., Ryman, N., 1990. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. 44(1): 38-53.
42- Larsen, A. B., 1996. Genetic structure of populations of beech (Fagus sylvatica L.) in Denmark. Scandinavian Journal of Forest Research, 11(3): 220-232.
43- Ledig, F. T., Guries, R. P., and Bonefeld, B. A., 1983. The relation of growth to heterozygosity in pitch pine. Evolution, 37(6): 1227-1238.
44- Leonardi, S., and Menozzi, P., 1995. Genetic variability of Fagus sylvatica  L.. in Italy: the role of post-glacial recolonization. Heredity, 75: 35-44.
45- Levin, D. A. and Kerster, H. W., 1974. Gene flow in sea plants. In: Dobzhansky, T., Hacht, M. K. and Streere, W. C. (Eds.) Evolutionary Biology, Vol. 7: 139-220. Plenum Press, New York.
46- Loveless, M. D. and Hamrick, J. L., 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Syst., 15: 65-95.
47- Löchelt, S. and Franke, A., 1995. Bestimmung der genetischen Konstitution von Buchen-beständen (Fagus sylvatica L.) entlang eines Hohentransektes von Freiburg auf den Schauinsland. Silvae Genetica, 44(5-6): 312-318.
48- Maruyama, T., 1970. On the rate of decrease of heterozygosity in circular stepping stone models of populations. Theor. Pop. Biol., 1: 101-119.
49- Merzeau, D., Di Giusto, F., Comps, B., Thiébaut, B., Letouzey, J. and Cuguen, J., 1989. The allozyme variants of beech (Fagus Sylvatica L.): inheritance and application to a study of the mating system. Silvae Genetica, 38, 195: 195-201.
50- Merzeau, D., 1991. Estimation des parameters du reproduction et des structures génétiques du Hêtre (Fagus sylvatica  L.), dizertácia, Université de Bordeaux I, 150+120 p.
51- Merzeau, D., Comps, B., Theibaut, B., and Letouzey, J. 1994. Estimation of Fagus sylvatica  L. mating system parameters in natural populations. Ann. Sci. For., 51: 163-173.
52- Miguchi, H., 1994. Role of wood mice on the regeneration of cool temperate forest. In: Proceeding of NAFRO, Niigata, Japon, Agust 20, 1994, pp. 115-121. Northeast Asia Forest Research Organization, Niigata University.
53- Mobayen, S. and Tregubov, V., 1969. The vegetative map of Iran. Publication of Tehran university, No. 14, 50 p.
54- Muona, O. 1990. Population genetics in forest tree improvment. In: Brown, A.H.D., Clegg, M.T. and Kahler, A.L., (Eds). Plant population, genetics, breeding and genetic resources. Weir. Sinauer Associates, Inc., Sunderland, Mass., PP. 282-298.
55- Muona, O., Yazdani, R. and Rudin, D., 1987. Genetic change between life stages in Pinus sylvestris L.: allozyme variation in seeds and planted seedling. Silva Genet., 36: 39-42.
56- Müller-Starck, G., 1985. Genetic differences between “tolerant” and “sensitive” beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silva Genetica, 34 (6): 241-247.
57- Müller-Starck, G., 1989. Genetic implications of environmental stress in adult forest stands of Fagus sylvatica L. In: Scholz, F., Gregorius, H.R., and Rudin, D. (Eds). Genetic Effects of Air Popllutants in Forest Tree Populations. Springer, Berlin, Heidelberg.127-142.
58- Müller-Starck, G., and Ziehe, M. 1991. Genetic variation in populations of Fagus sylvatica L., Quercus robur L. and Q. petrea Liebl. In Germany. In: Müller-Starck, G. and Ziehe, M. (Eds.). Genetic Variation in European Populations of Forest Trees. Sauerländer;s verlg, Frankfurt, 125-140.
59- Müller-Starck, G., 1993. Auswirkungen von Umweltbelastungen auf genetische Strukturen von Waldbeständen am Beispiel der Buche (Fagus sylvatica L.). Schriften aus der Forstl. Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt, 112, 193 p. J. D. Sauerländers, Frankfurt/M.
60- Müller-Starck, G. and Starke, R. 1993. Inheritance of isozymes in European beech (Fagus sylvatica L.). J. Hered., 84: 291-296.
61- Nei, M.. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet., 41: 225-233.
62- Nilsen, S.G., Schaffalitsky-de-Muckadell, M., 1954. Flower observation and cotrolled polination in Fagus. Z. Forest Genet., 3: 6-17.
63- Paule, L., Gömöry, D. and Vyšny, J., 1995. Genetic diversity and differentiation of beech populations in eastern Europe. In: Madsen, S. (Eds.). Genetics and Silviculture of Beech. Forskningsserien (Copenhagen), 11: 159-167.
64- Paule, L. and Gömöry, D., 1997. Genetic diversity of beech populations in Europe. First EUFORGEN Meeting on Social Broadleaves, France.
65- Podani, J., 1988. Syn-TAX III. Abstract Botanica, 12: 183.
66- Raymond, M. and Rousset, F., 1995a. An exact test of population differentiation. Evolution, 49: 1280-1283.
67- Raymond, M. and Rousset, F., 1995b. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J. Hered., 86: 248-249.
68- Rossi, P., Vendramin, G.G. and Giannini, R., 1996. Estimation of mating system parameters in two Italian natural populations of Fagus sylvatica. Can. J. For., 26.
69- Rousset, F. and Raymond, M., 1995. Testing heterozygote excess and deficiency. Genetics, 150: 1413-1419.
70- Sagheb-Talebi, K., 2000. Hyrcanian forests (North of Iran), the unique Ecosystem in Near East region. XXI IUFRO Word Congress-Forests and Society: The Role of research, Kuala Lumpur, Malaysia.
71- Savolainen, O. and Kärkkäinen, K., 1992. Effects of forst mangement on gene pools. New Forests, 6: 229-245.
72- Slatkin, M. and Barton, N. H., 1989. A comparision of three indirect methods of estimating average levels of gene flow. Evolution, 43:1349-1368.
73- Sorensen, F., 1969. Embryonic genetic load in coastal Douglas-fir, Pseudotsuga menziesii var. menzisii. Am. Nat., 103: 389-398.
74- Swofford, D. L. and Selender, R. B. 1981. Biosys-1. J. Hered., 72: 281-283.
75- Tauber, H., 1977. Investigation of areal pollen transport in a forested area. Doctor Thesis, Univrsity of Copenhagen.
76- Thiébaut, B., Lumaret, R. and Vernet, P.H., 1982. The bud enzymes of beech (Fagus sylvatica  L.) Genetic distinction and analysis of polymorphism in several French populations. Silvae Genetica, 31, pp. 51-60.
77- Thiébaut, B., 1984. Variabilité génétique “ hêtre commun” (Fagus sylvatica L.) dans les milieux montagnards et de haute altitude en Europe. Colloque Ecologie et al Biogéographie des Milieux Montagnards et de Haute Altitude, Gabas. France et Documents d’Ecologie Pyrénéenne, 3-4: 513-521.
78- Thiébaut, B., Cuguen, J., Comps, B., and Merzeau, D., 1986. Influence du mode reproduction sur la structure génétique des populations d'arbers anémophiles: le cas du hêtre (Fagus sylvatica L.). Coll. Nat. CNRS “Biologie dse populations”, Lyon, 4-6 september, pp. 518-527.
79- Thiébaut, B., Cuguen, J., Comps, B., and Merzeau, D., 1990. Genetic differentiation in beech (Fagus sylvatica  L.) during periods of invastion and regeneration. In: Castri, F., Hansen, A.J. and Debussche, M. [Eds]. Biological Invasions in Europe and the Mediteranean Basin. Kluwer Academic Publisher, London.
80- Tomaru, N., Mitsutsuji, T., Takahashi, M., Tsumura, Y., Uchida, K. and Onba, K., 1996. Genetic diversity in Fagus crenata (Japanes beech): influence of the distributional shift during the late-Quaternary. Heredity, 78: 241-251.
81- Turok, J., 1993. Levels of genetic variation in 20 beech (Fagus sylvatica L.) populations from western Germany. In: Muhs, H. J. and von. Wuehlisch, G. (Eds.). The Scientific Basis for Evaluation of Forest Genetic Resources of Beech. Proceedings of EC workshop, Ahrensburg, 181-195.
82- Turok, J., 1996. Genetische untersuchungen bei der buche. Genetische anpassungsprozesse und die erhaltung von genressourcen in Buchenwäldern (Fagus sylvatica L.) Schrifteneihe der landesanstalt fuer ölologie, bodenroednung und forsten. Landesanstalt fuer Agrarordnung Nordrhein-Westfalen, 8: 1-136.
83- Vander wall, S. B., 1990. Food Hoarding in Animals. The university of Chicago Press, Chicago.
84- Villani, F., Pigliucci, M., Benedettelli, S. and Cherubini, M. 1991a. Genetic differentiation among Turkish chestnut (Castanea sativa Mill.) populations. Heredity, 66: 131-136.
85- Villani, F., Pigliucci, M. and Benedettelli, S., 1991b. Genetic variation of Italian chestnut: a tool to study environmental impact. In: Giannini, R. (Eds.). Effects of Pollution on the Genetic Structure of Forest Tree Populations, 57-65.
86- Vyšny, J., 1997. Genetic diversity and differentiation of beech populations in the eastern Europe. Kandidátska dizertačná práca Tachniká Univerzita vo Zvolene, Zvolene, 154 p.
87- Watanbae, S., 1990. Japanese beech (Fagus crenata): its characteristics and distribution. Nature in Hokkaido, 29: 1-6.
88- Wier, B. S. and Cockerham, C. C., 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370.
89- Wright, S., 1931. Evolution in Mendelian populations. Genetics, 16: 97-159.
90- Yazdani, R., Muona, O., Rdin, D. and Szmidt, A. E., 1985. Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated under story. For. Sci., 31: 430-436.