- Baltsavias, E., Eisenbeiss, H., Akca, D., Waser, L.T., Kuckler, M., Ginzler, C. and Thee, P. 2007. Modeling fractional shrub/tree cover and multi-temporal changes using high-resolution digital surface model and CIR-aerial images. Available from: http://www.photogrammetry.ethz.ch/ general/persons/devrim-pub1.html, 11p.
- Benz, U.C., Hoffmann, P., Willhauck, G., Lingenfelder, I. and Heynen, M. 2004. Multi-resolution object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58: 239-258.
- Bohlin, J., Olsson, H., Olofsson, K. and Wallerman, J. 2007. Tree species discrimination by aid of template matching applied to digital air photos. Workshop on 3D Remote Sensing in Forestry- Session 6a, Vienna: 199-203.
- Definiens, A.G. 2006. Definiens Professional5 User Guide. The Image Intelligence Company, Available from: http://read.pudn.com/downloads112/ebook/467360/eCognition5.0UserGuide.pdf
- Heikkinen, V., Korpela, I., Tokola, T., Honkavaara, E. and Parkkinen, J. 2011. An SVM classification of tree species radiometric signatures based on the Leica ADS40 sensor. IEEE Transactions on Geoscience and Remote Sensing, 49(11): 4539-4551.
- Hirschmugl, M., Ofner, M., Raggam, J. and Schardt, M. 2007. Single tree detection in very high resolution remote sensing data. Remote Sensing of Environment, 110(4): 533-544.
- Honkavaara, E., Markelin, L., Ahokas, E., Kuittinen R. and Peltoniemi, J. 2008. Calibrating digital photogrammetric airborne imaging systems in a test field. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B1): 555-560.
- Kaartinen, H., Hyyppä, J., Yu, X., Vastaranta, M., Hyyppä, H., Kukko, A., Holopainen, M., Heipke, C., Hirschmugl, M., Morsdorf, F., Næsset, E., Pitkänen, J., Popescu, S., Solberg, S., Wolf, B.M. and Wu, J.C. 2012. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing, 4: 950-974.
- Knight, J.F. and Lunetta, R.S. 2003. An experimental assessment of minimum mapping unit size. IEEE Transactions on Geoscience and Remote Sensing, 41(9): 2132-2134.
- Ozdemir, I., Norton, D.A, Ozkan, U.Y., Mert, A. and Senturk, O. 2008. Estimation of tree size diversity using object-oriented texture analysis and ASTER imagery. Sensors, 8(8): 4709-4724.
- Rafieyan, O., Darvishsefat, A.A., Babaii, S. and Mattaji, A. 2011. Identification of tree species using object-based classification of Digital Aerial Images in the Northern forests of Iran (Case study: Chamestan-Nur). Iranian Journal of Remote Sensing and GIS, 4(2): 63-74 (In Persian).
- Rama Rao, N., Garg, P.K. and Ghosh, S.K. 2007. Evaluation of radiometric resolution on land use/land cover mapping in an agricultural area. International Journal of Remote Sensing, 28(2): 443-450.
- Schiewe, J. 2002. Segmentation of high-resolution remotely sensed data concepts, application and problems. Proceeding of Symposium on Geospatial Theory, Processing and Applications, Ottawa, Canada: 235-242.
- Shabanipoor, M. 2011. Investigation on the possibility of reconnaissance of tree species in high-resolution images by object-based classification. M.Sc. thesis, Department of Forestry, University of Tehran, Karaj, 73p (In Persian).
- Waser, L.T., Ginzler, C., Kuechler, M., Baltsavias, E. and Hurni, L. 2011. Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric variables derived from ADS40 and RC30 data. Remote Sensing of Environment, 115(1): 76-85.
- Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly M. and Schirokauer, D. 2006. Object-based detailed vegetation classification with airborn high spatial resolution remote sensing imagery. Photogrammetric Engineering and Remote Sensing, 72(7): 799-811.