طبقه‌بندی پوشش زمین کرانه رودخانه زرینه‌رود به تفکیک گونه‌های درختی و درختچه‌ای با استفاده از سری زمانی سنتینل 1 و 2

نوع مقاله : علمی- پژوهشی

نویسندگان

1 نویسنده مسئول، استادیار، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 استادیار، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 استادیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

4 دانشیار، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

5 پژوهشگر، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.22092/ijfpr.2024.363758.2123

چکیده

سابقه و هدف: ازآنجایی‌که شناخت و پایش بوم‌سازگان‌‌های کران‌‌‌آبی، اولین‌گام در مدیریت و حفاظت آن‌ها است، تولید نقشه پوشش زمین به‌تفکیک گونه‌‌های درختی و درختچه‌‌ای در محدوده حریم رودخانه زرینه‌‌رود در استان آذربایجان غربی در پژوهش پیش‌رو مدنظر قرار گرفت. در تهیه نقشه‌‌های پوشش زمین، تفکیک اراضی با شباهت زیاد طیفی با استفاده از تصاویر تک‌‌زمانه، دقت چندانی ندارد، بنابراین در پژوهش پیش‌رو، سری زمانی تصاویر ماهواره‌‌ای برای استفاده از تفاوت‌‌های فنولوژیک گونه‌‌های گیاهی در تفکیک طبقه‌های درختی و درختچه‌‌ای به‌کار برده شد.
مواد و روش‌‌ها: در این پژوهش، طی دو مرحله، طبقه‌های پوشش زمین از یکدیگر تفکیک شده‌‌اند. در مرحله اول با استفاده از داده‌‌های سری زمانی سنتینل 1 و 2 طبقه‌های کلی پوشش درختی (طبیعی، باغ و صنوبرکاری)، پوشش درختچه‌‌ای (طبیعی و باغ)، پوشش علفی (مرتعی)، زراعت، اراضی شهری، پهنه آبی و خاک از یکدیگر تفکیک شدند. برای دستیابی به هدف مذکور و باتوجه‌به اینکه تغییرات فصلی تصاویر می‌توانند اطلاعات مناسبی از طبقه‌های پوشش زمین در اختیار بگذارند، تصاویر سنتینل 2 و قطبش‌‌های راداری سنتینل 1 متعلق به سال 2021 به‌صورت مدیان (Median) در هر فصل در سکوی گوگل ارث انجین پردازش شدند. داده‌‌های مذکور به‌صورت چهار ترکیب لایه ورودی و با چهار الگوریتم یادگیری ماشین در طبقه‌‌بندی استفاده شدند. در مرحله دوم برای تفکیک پوشش درختی و درختچه‌‌ای به طبقه‌های بید، گز، باغ و صنوبرکاری براساس تفاوت در روند فنولوژی پوشش گیاهی غالب منطقه (بیدها، گزها، باغات میوه و صنوبرکاری‌‌ها)، با استفاده از روند تغییرات یک‌ساله شاخص‌های تفاضل نرمال‌شده پوشش گیاهی (NDVI)، تفاضل سبز و قرمز نرمال‌شده (NGRDI)، تفاضل نرمال‌شده لبه قرمز (NDREI) و نرمال‌شده تفاوت پوشش گیاهی سبز (GNDVI) و ترکیب آن با قطبش HV راداری سنتینل 1 به‌صورت مدیان در هر فصل، نقشه نهایی پوشش زمین تولید شد.
نتایج: یافته‌های مربوط به مرحله اول طبقه‌‌بندی نشان داد که لایه ورودی NDVI (Monthly)_ Radar (Seasonal)_ Sentinel 2 (Seasonal) و الگوریتم جنگل تصادفی با صحت کلی 88 درصد و ضریب کاپای 85/0 دقیق‌ترین لایه ورودی و الگوریتم طبقه‌بندی‌کننده بودند. در محله دوم طبقه‌‌بندی، شاخص NDVI میان ماه‌های آوریل تا نوامبر، تفکیک هر چهار دسته پوشش درختی و درختچه‌‌ای را امکان‌پذیر کرد. GNDVI میان ماه‌های دسامبر تا آوریل، بهترین شاخص برای تفکیک بیدزارها است. همچنین، این شاخص میان ماه می تا نوامبر، گزستان‌ها را به‌خوبی تفکیک کرد. NGRDI نیز میان می تا نوامبر برای تفکیک گزستان‌ها مناسب است. همچنین، این شاخص میان آوریل تا نوامبر، صنوبرکاری‌‌ها را به‌خوبی تفکیک می‌کند. شاخص GNDVI میان آوریل تا سپتامبر برای تفکیک دو دسته باغات و صنوبرکاری‌‌ها از بیدزار و گزستان به‌خوبی عمل می‌کند. با استفاده از ترکیب ورودی مذکور و الگوریتم جنگل تصادفی، نقشه نهایی تولید شد. صحت کلی و ضریب کاپای حاصل از صحت‌‌سنجی به‌کمک نمونه‌‌های زمینی و تصاویر گوگل ارث به‌ترتیب 80 درصد و 77/0 به‌دست آمد. اعداد قطر اصلی ماتریکس خطا بیانگر بیشترین تفکیک‌‌پذیری در طبقه‌های آب، خاک و اراضی شهری بودند. از میان طبقه‌های پوشش گیاهی، بیدزارها و اراضی کشاورزی بهترین تفکیک‌‌پذیری را نشان دادند.
نتیجه‌‌گیری کلی: تفاوت در رفتار فنولوژیک گیاهان که شامل برگ‌‌دهی، گل‌‌دهی، تولید میوه، خزان و سیکل خواب هستند، سبب نوسان مقدار شاخص‌های پوشش‌‌گیاهی در طول فصل‌های مختلف یک سال می‌‌شود. این تفاوت‌ها می‌‌توانند در تهیه نقشه‌‌های پوشش گیاهی برای افزایش تفکیک‌‌پذیری استفاده شوند. درنتیجه، توده‌‌های درختی و درختچه‌‌ای خالص که رفتار فنولوژیک متفاوت‌‌تری از توده‌‌های هم‌جوار خود دارند، از طریق سری زمانی تصاویر ماهواره‌‌ای با دقت زیادتری، قابل‌تفکیک هستند.
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Land cover classification in Zarinehroud’s Riparian Ecosystem: Separating tree and shrub species using Sentinel 1 and Sentinel 2 Time Series Imagery

نویسندگان [English]

  • S. Teimouri 1
  • F. Ahmadloo 2
  • J. Henareh 3
  • S. Razavizadeh 2
  • M. Calagari 4
  • A. Gohardoost 5
1 Assistant Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2 Assistant Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
3 Assistant Prof., West Azarbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Uremia, Iran
4 Associate Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
5 Researcher, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Background and Objectives: Given the significance of investigating and monitoring riparian ecosystems, this study was conducted to identify and map the land cover, including tree and shrub species classes, around the Zarinehroud River in West Azerbaijan province, Iran. Recognizing that the separation of lands with high spectral similarity using single-time images is not precise, this study utilized a time series of satellite images, capitalizing on the phenological differences of plant species.
Methodology: The research separated the land cover classes into two stages. In the first stage, the time series data from Sentinel 1 and 2 were used to map different classes of tree cover (natural, wood farming, orchard), shrub cover (natural, orchard), grass or pasture, agriculture, residential lands, soil, and water bodies. Given that seasonal changes in the images can provide valuable information about land cover classes, a one-year (2021) time series of Sentinel 2 optical images and Sentinel 1 radar polarizations for 2021, in the form of median in each season, were processed on the Google Earth Engine platform. The data were classified using four composites of input features and four classifiers. In the second stage, to separate the vegetation classes into Tamarix, willows, orchard, and poplar plantation, the trend of one-year changes of normalized difference vegetation index (NDVI), normalized green red difference index (NGRD), normalized difference red edge index (NDREI), and green normalized difference vegetation index (GNDVI) combined with HV polarization of Sentinel 1 radar in the form of median in seasons, was used as an input feature. The land cover map produced contained Tamarix, willows, orchard, poplar plantation, grass or pasture, agriculture, residential lands, soil, and water bodies.
Results: In the first stage of classification, the input feature of NDVI (Monthly)_ Radar (Seasonal)_ Sentinel 2 (Seasonal) and the random forest classifier were the best feature and the most accurate classification algorithm, separating the classes from each other with an overall accuracy and Kappa coefficient of 88% and 0.85, respectively. In the second stage of classification, the NDVI index between the months of April and November enabled the separation of all four tree and shrub covers. GNDVI between December and April was the best indicator for separating willows. Also, between May to November, it effectively separated Tamarix. NGRDI was suitable between May and November for separating Tamarix and also separated the poplar plantations between April and November. The GNDVI index between April and September effectively separated the two categories of orchards and poplar plantations from Tamarix and willows. The map was generated using the mentioned input feature and random forest algorithm. The overall accuracy and Kappa coefficient obtained from the validation relying on ground samples and Google Earth images were 80% and 0.77, respectively. The main diagonal of the error matrix shows the highest separation between water, soil, and urban land classes. Among the vegetation classes, willows and agricultural lands exhibited the best distinction.
Conclusion: The variation in a plant’s phenology, encompassing leafing, blossoming, fruiting, fall, and sleep cycle, leads to changes in the values of vegetation indicators during the seasons, which can be utilized in mapping vegetation to enhance separability. Consequently, if tree and shrub stands are pure and exhibit a different phenological behavior from their neighbors, they can be distinguished with higher accuracy using time series of satellite images.

کلیدواژه‌ها [English]

  • Google earth engine
  • phenology
  • radar
  • Riparian Ecosystem of Zarinehroud
  • separation of plant species
- Baker, C., Lawrence, R., Montagne, C. and Patten, D., 2006. Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands, 26(2): 465-474.
- Benedict, M., 2007. Riparian forests in NW Ohio watersheds: Relations among landscape structure, land use/land cover, and water quality in streams. Ph.D. thesis, University of Toledo, Toledo, Ohio, USA, 135p.
- Daryaei, A., Sohrabi, H., Atzberger, C. and Immitzer, M., 2021. Mapping vegetation in riparian areas using pixel-based and object-based classification of Sentinel-2 multi-temporal imagery. Iranian Remote Sensing and GIS, 13(3): 19-32 (In Persian with English Summary).
- Dobrinić, D., Gašparović, M. and Medak, D., 2021. Sentinel-1 and 2 time-series for vegetation mapping using random forest classification: A case study of Northern Croatia. Remote Sensing, 13(12): 2321.
- Dufour, S., Rodríguez-González, P.M. and Laslier, M., 2019. Tracing the scientific trajectory of riparian vegetation studies: Main topics, approaches and needs in a globally changing world. Science of the Total Environment, 653: 1168-1185.
- European Space Agency, 2020. Sentinel Online. Available at: https://sentinel.esa.int/web/sentinel
- Giese, L.A., Aust, W.M., Trettin, C.C. and Kolka, R.K., 2000. Spatial and temporal patterns of carbon storage and species richness in three South Carolina coastal plain riparian forests. Ecological Engineering, 15: S157-S170.
- Gitelson, A.A., Kaufman, Y.J., Stark, R. and Rundquist, D., 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1): 76-87.
- Gitelson, A. and Merzlyak, M.N., 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22(3): 247-252.
- Hamrouni, Y., Paillassa, E., Chéret, V., Monteil, C. and Sheeren, D., 2022. Sentinel-2 poplar index for operational mapping of poplar plantations over large areas. Remote Sensing, 14(16): 3975.
- Hatami Shah Khali, S.M., Sharifi Hashjin, Sh., Nasiri Aghajan, F. and Emami, S.F., 2022. Land cover mapping of the Soomesara city using time series of satellite imagery. Iranian Journal of Forest and Poplar Research, 30(4): 365-382 (In Persian with English summary).
- Hupp, C.R. and Osterkamp, W.R., 1996. Riparian vegetation and fluvial geomorphic processes. Geomorphology, 14(4): 277-295.
- Huylenbroech, L., Laslier, M., Dufour, S., Georges, B., Lejeune, P. and Michez, A., 2020. Using remote sensing to characterize riparian vegetation: a review of available tools and perspectives for managers. Journal of Environmental Management, 267: 110652.
- Jin, Y., Liu, X., Chen, Y. and Liang, X., 2018. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. International Journal of Remote Sensing, 39(23): 8703-8723.
- Kordi, F., Hamzeh, S., Atarchi, S., Alavipanah, S.K., 2019. Agricultural product classification for optimal water resource management using the data time series of Landsat8. Iranian Journal of Ecohydrology, 5(4): 1267-1283 (In Persian with English Summary).
- Lazecky, M., Canaslan Comut, F., Qin, Y. and Perissin, D., 2017. Sentinel-1 interferometry system in the high-performance computing environment. Proceedings of Conference on the Rise of Big Spatial Data. Ostrava, Czech Republic, 16-18 Mar. 2016: 131-139.
- Macfarlane, W.W., McGinty, C.M., Laub, B.G. and Gifford, S.J., 2017. High-resolution riparian vegetation mapping to prioritize conservation and restoration in an impaired desert river. Restoration Ecology, 25(3): 333-341.
- Ozturk, M.Y. and Colkesen, I., 2020. Mapping of poplar tree growing fields with machine learning algorithms using multi-temporal Sentinel-2A imagery. Proceedings of 41th Asian Conference on Remote Sensing. Deqing, China, 9-11 Nov. 2020: 8p.
- Phan, T.N., Kuch, V. and Lehnert, L.W., 2020. Land cover classification using Google Earth Engine and random forest classifier—the role of image composition. Remote Sensing, 12(15): 2411.
- Ronoud, Gh., Darvishsefat, A.A. Schaepman, M.E., Namiranian, M. and Maghsoudi Y. 2022. Woody Aboveground Biomass Estimation using Radar Data in the mixed Hyrcanian Forest (Case Study: Khayroud Forest of Nowshahr, Mazandaran). Iranian Journal of Forest, 14(3): 257-274 (In Persian with English summary).
- Schulz, D., Yin, H., Tischbein, B., Verleysdonk, S., Adamou, R. and Adamou, N., 2021. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS Journal of Photogrammetry and Remote Sensing, 178: 97-111.
- Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2): 127-150.
- Villarreal, M.L., 2009. Land use and disturbance interactions in dynamic arid systems: multiscale remote sensing approaches for monitoring and analyzing riparian vegetation change. Ph.D. thesis, Faculty of the School of Geography and Development, University of Arizona, Tucson, Arizona, USA, 167p.
- Xue, Z., Du, P. and Feng, L., 2014. Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4): 1142-1156.