برآورد ظرفیت نگهداری آب تاج‌پوشش و ضریب تاج‌بارش مستقیم تک‌درختان سرو نقره‌ای (پژوهش موردی: پارک جنگلی چیتگر تهران)

نوع مقاله: علمی- پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد جنگلداری، دانشگاه تهران

2 دانشیار، دانشگاه تهران

3 استادیار، دانشگاه تامپسون ریورز کانادا

4 استادیار، دانشگاه آزاد کرج

چکیده

پژوهش پیش‌رو با هدف برآورد میزان ظرفیت نگهداری تاج‌پوشش (S) و نرخ تبخیر به شدت باران در زمان بارندگی () با استفاده از روش Pereira و نیز ضریب تاج‌بارش مستقیم (p) در تک‌درختان سرو نقره‌ای (Cupressus arizonica Green.) واقع در پارک چیتگر تهران با اقلیم نیمه‌خشک، طی یک سال (بهمن‌ماه 1390 تا بهمن‌ماه 1391) انجام شد. میزان بارندگی در هر رخداد توسط شش باران‌سنج و تاج‌بارش توسط 20 باران‌سنج اندازه‌گیری شد. باران‌ربایی از تفاوت تاج‌بارش و باران در هر رخداد باران به‌دست آمد. درمجموع 55 رخداد باران با عمق تجمعی 234 میلی‌متر ثبت و درصدهای تجمعی و نسبی باران‌ربایی به‌ترتیب 21/8 درصد و 32/1 درصد برآورد شدند. بین باران‌ربایی و باران،همبستگی توانی مثبت و معنی‌داری (r=0/89 ) و بین درصد نسبی باران‌ربایی و باران برای میانگین پنج تک‌درخت سرو نقره‌ای همبستگی توانی منفی و معنی‌داری (r=0/69 ) مشاهده شد. میانگین مقدار ظرفیت نگهداری آب تاج‌پوشش، 0/38 میلی‌متر، نرخ تبخیر به شدت باران در زمان بارندگی، 0/14 و ضریب تاج‌بارش مستقیم، 0/46 به‌دست آمدند. برای مدیریت صحیح جنگل‌کاری‌ها، آگاهی از مقدار باران‌ربایی و اجزای آن مانند ظرفیت نگهداری آب تاج‌پوشش،نرخ تبخیر به شدت باران در زمان بارندگی و نیز ضریب تاج‌بارش مستقیم در کنار مقدار تعرق درختان می‌تواند به انتخاب گونه‌های مناسب و سازگار در مناطق خشک و نیمه‌خشک کشور کمک نماید. جهت برآورد ظرفیت نگهداری آب تاج‌پوشش که پارامتر مهمی در فرآیند باران‌ربایی می‌باشد، می‌توان از تنها روش موجود در سطح تک درختان، روش Pereira، استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Tree-based estimation of canopy water storage capacity and direct throughfall coefficient of Cupressus arizonica Green.

نویسندگان [English]

  • Seyyed Mohammad Moein Sadeghi 1
  • Pedram Attarod 2
  • Thomas Grant Pypker 3
  • Vilma Bayramzadeh 4
1 M.Sc. Student of Silviculture and Forest Ecology, University of Tehran, Karaj, I.R. Iran.
2 Associate Prof., Department of Forestry and Forest Economics, University of Tehran, Karaj
3 Assistant Prof., Department of Natural Resource Sciences, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada.
4 Assistant Prof., Department of Wood Science, Karaj branch, Islamic Azad University, Karaj, Alborz Province, Iran
چکیده [English]

The aim of this study was to estimate the individual tree-based 1) canopy water storage capacity (S), 2)  ratio of mean evaporation rate from the wet canopy to the mean rainfall intensity () by the Pereira method, and 3) direct throughfall coefficient (p) for Cupressus arizonica trees. The trees wereafforested in the Chitgar forest park in Tehran which is classified as a semiarid region. Measurements were carried out from February 2011 to February 2012. To measure the gross rainfall (GR), six rain-gauges were installed in an open space adjacent to the trees. Throughfall  (TF) was measured using a number of twenty rain-gauges located under the crown of five individual trees. Rainfall interception (I) was calculated as the difference between GR and TF. During the measurement period, 55 rainfall events were recorded with a cumulative depth of 234 mm. The C. arizonica trees intercepted 21.8% and 32.1% of the incident rainfall on cumulative-based and event-based (each GR) manner, respectively. Positive and negative power correlations were observed between I and GR (r = 0.89)as well as between(I: GR) % and GR (r = 0.69) for the mean value of five individual trees. Mean values of S,, and p were estimated as 0.38 mm, 0.14, and 0.46, respectively. I and its elements (), S, and p as well as transpiration of trees are, therefore concluded as necessary parameters to be considered when selecting suitable species for afforestation projects in the arid and semiarid zone. In addition and as a key parameter for calculating I, S can be optimally estimated by Pereira method which is exclusively proposed for tree-based measurements.

کلیدواژه‌ها [English]

  • canopy water storage capacity
  • Cupressus arizonica
  • Direct throughfall coefficient
  • Pereira method
  • rainfall interception
  • semiarid climate
- Asadian, Y. 2007. Rainfall interception in an urban environment. M. Sc. Thesis, University of British Columbia, 84p.

- Bagheri, H., Attarod, P., Etemaad, V., Sharafieh, H., Ahmadi, M.T. and Bagheri, M. 2011. Rainfall interception loss by Cupressus arizonica and Pinus eldarica in an arid zone afforestation. Iranian Journal of Forest and Poplar Research, 19(2): 314-25 (In Persian).

- Buttle, J.M. and Farnsworth, A.G. 2012. Measurement and modeling of canopy water partitioning in a reforested landscape: The Ganaraska Forest, southern Ontario, Canada. Journal of Hydrology, 466-467: 103-114.

- Calder, I.R. 1996. Dependence of rainfall interception on drop size. 1. Development of the two-layer stochastic model. Journal of Hydrology, 185: 363-378.

- Carlyle-Moses, D.E., Flores Laureano, J.S. and Price, A.G. 2004. Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico. Journal of Hydrology, 297: 124-135.

- David, T.S., Gash, J.H.C., Valente, F., Pereira, J.S., Ferreira, M.I. and David, J.S. 2006. Rainfall interception by an isolated evergreen oak tree in a Mediterranean Savannah. Hydrological Processes, 20: 2713-2726.

- De Groen, M.M. and Savenije, H.H.G. 2006. A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resources Research, 42: 1-10.

- Deguchi, A., Hattori, S. and Park, H. 2006. The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. Journal of Hydrology, 319: 80-102.

- Edwards, K.A., Classen, G.A. and Schroten, E.H.J. 1983. The water resource in tropical Africa and its exploitation. ILCA Research Report No. 6. Available online: http://ww.fao.org/wairdocs/ilri/x5524e/x5524e00.htm#contents (Accessed on March 6, 2009).

- Fleischbein, K., Wilcke, W., Goller, R., Boy, J., Valarezo, C., Zech, W. and Knoblich, K. 2005. Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrological Processes, 19(7): 1355-1371.

- Flerchinger, G.N. and Saxton, K.E. 1989. Simultaneous heat and water model of a freezing snow-residue-soil system: II. Field verification. Transactions of the American Society of Agricultural Engineers, 32(2): 573-578.

- Gash, J.H.C., Lloyd, C.R. and Lachaud, G. 1995. Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170: 79-86.

- Gash, J.H.C. and Morton, A.J. 1978. An application of the Rutter model to the estimation of the interception loss from Thetford Forest. Journal of Hydrology, 38(1-2): 49-58.

- Gash, J.H.C., Wright, I.R. and Lloyd, C.R. 1980. Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology, 48: 89-105.

- Geiger, R. 1965. The Climate near the Ground. Harvard University Press, Cambridge, Massachusetts, 611p.

- Gerrits, A.M.J., Pfister, L. and Savenije, H.H.G. 2010. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrological Processes, 24: 3011-3025.

- Hejduk, S. and Kasprzak, K. 2010. Specific features of water infiltration into soil with different management in winter and early spring period. Journal of Hydrology and Hydromechanics, 58(3): 175-180.

- Iroumé, A. and Huber, A. 2002. Comparison of interception losses in a broadleaved native forest and a Pseudotsuga menziesii (Douglas fir) plantation in the Andes Mountains of southern Chile. Hydrological Processes, 16: 2347-2361.

- Jarvis, P.G. and Fowler, D. 2008. Forests and Atmosphere, In: J. Evans, Ed., The Forests Handbook, Black-well Science, Oxford, 229-281.

- Jackson, I.J. 1975. Relationships between rainfall parameters and interception by tropical forests. Journal of Hydrology, 24: 215-238.

- Jetten, V.G. 1996. Interception of tropical rainforest: Performance of a canopy water balance model. Hydrological Processes, 10(5): 671-685.

- Keim, R.F., Skaugset, A.E. and Weiler, M. 2005. Temporal persistence of spatial patterns in throughfall. Journal of Hydrology, 314: 263-274.

- Klaassen, W., Bosveld, F. and DeWater, E. 1998. Water storage and evaporation as constituents of rainfall interception. Journal of Hydrology, 212-213: 36-50.

- Lankreijer, H.J.M., Hendriks, M.J. and Klaassen, W. 1993. A comparison of models simulating rainfall interception of forests. Agricultural and Forest Meteorology, 64: 187-199.

- Leyton, L., Reynolds, E.R.C. and Thompson, F.B. 1967. Rainfall interception in forest and moorland. In: Sopper, W.E., Lull, H.W. (Eds.), International Symposium on Forest Hydrology, Pennsylvania State University, Pergamon Press, pp: 163-178.

- Link, T.E., Unsworth, M. and Marks, D. 2004. The dynamics of rainfall interception by a seasonal temperate rainforest. Agricultural and Forest Meteorology, 124: 171-191.

- Liu, S. 1998. Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North-Central Florida. Journal of Hydrology, 207: 32-41.

- Llorens, P. 1997. Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountains abandoned area II. Assessment of the applicability of Gash’s analytical model. Journal of Hydrology, 199: 346-359.

- Llorens, P. and Gallart, F. 2000. A simplified method for forest water storage capacity measurement. Journal of Hydrology, 240: 131-144.

- Lormand, J.R. 1988. The effects of urban vegetation on strormwater runoff in an arid environment. Master's thesis, School of Renewable National Resources, University of Arizona, Tucson, Arizona, 100p.

- Loren, L.W., Frank, H.W. and Thomas, F.C. 2010. Effect of land cover change on runoff curve number in Iowa, 1832-2001. Ecohydrology, 4(2): 315-321.

- Loustau, D., Bergiger, P. and Granier, P. 1992. Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash analytical model of interception. Journal of Hydrology, 138: 469-485.

- Mair, A. and Fares, A. 2010. Throughfall characteristics in three non-native Hawaiian forest stands. Agricultural and Forest Meteorology, 150: 1453-1466.

- Monteith, J.L. and Unsworth, M.H. 1990. Principles of Environmental Physics, 2nd Ed., Edward Arnold,. New York, pp: 53-54.

- Motahari., M. and Attarod, P. 2012. Canopy water storage capacity and its effects on rainfall interception in a Pinus eldarica plantations in a semi-arid climate zone. Iranian Journal of Forest and Poplar Research, 20(1): 109-121 (In Persian).

- Owens, M.K., Lyons, K.R. and Alegandro, C.L. 2006. Rainfall partitioning within semiarid Juniper communities: effects of event size and canopy cover. Hydrological Processes, 20: 3179-3189.

- Penman, H.L. 1963. Vegetation and Hydrology. Tech. Comment No. 53, Commonwealth Bureau of Soils, Harpenden, Harpenden, commonwealth Agricultural Bureaux, Farham Royal. Quarterly Journal of the Royal Meteorological Society, 89: 565-566.

- Pereira, F.L., Gash, J.H.C., David, J.S., David, T.S., Monteiro, P.R. and Valente, F. 2009. Modelling interception loss from evergreen oak Mediterranean Savannas: Application of a tree-based modelling approach. Agricultural and Forest Meteorology, 149(3-4): 680-688.

- Pypker, T.G., Bond, B.J., Link, T.E., Marks, D. and Unsworth M.H., 2005. The importance of canopy structure in controlling the interception loss of rainfall: examples from a young and an old-grown Douglas-fir forest. Agricultural and Forest Meteorology, 130: 113-129.

- Pypker, T.G., Tarasoff, C.C. and Koh, H.S. 2012. Assessing the efficacy of two indirect methods for quantifying canopy variables associated with the interception loss of rainfall in Temperate Hardwood Forests. Open Journal of Modern Hydrology, 2: 29-40

- Savenije, H.H.G. 2004. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes, 18: 1507-1511.

- Sraj, M., Brilly, M. and Mikos, M. 2008. Rainfall interception by two deciduous Mediterranean Forests of contrasting stature in Slovenia. Agricultural and Forest Meteorology, 148: 121-134.

- Staelens, J., De Schrijver, A., Verheyen, K. and Verhoest, N.E.C. 2008. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrological Processes, 22(1): 33-45.

- Teklehaimanot, Z., Jarvis, P.G. and Ledger, D.C. 1991. Rainfall interception and boundary layer conductance in relation to tree spacing. Journal of Hydrology, 123: 261-278.

- Vegas Galdos, F., Álvarez, C., García, A. and Revilla, J.A. 2012. Estimated distributed rainfall interception using a simple conceptual model and Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Hydrology, 468-469: 213-228.

- Villarreal, E.L. and Bengtsson, A. 2004. Inner city stormwater control using a combination of best management practices. Ecological Engineering, 22(4-5): 279-298.

- Williams, M.R., Filoso, S. and Lefebvre, P.A. 2004. Effects of land-use change on solute fluxes to floodplain lakes of the central Amazon. Biogeochemistry, 68(2): 259-275.

- Wullaert, H., Pohlert, T., Boy, J., Valarezo, T. and Wilcke, W. 2009. Spatial throughfall heterogeneity in a montane rain forest in Ecuador: Extent, temporal stability and drivers. Journal of Hydrology, 377: 71-79.

- Xiao, Q. and McPherson, E.G. 2011. Rainfall interception of three trees in Oakland, California. Urban Ecosystems, 14: 755-769.

- Zinke, P.J. 1967. Forest interception studies in the United States. Forest Hydrology, Pergamon Press, Oxford, 137-161.