- Antropov, O., Rauste, Y., Ahola, H., & Hame, T. 2013. Stand-level stem volume of boreal forests from spaceborne SAR imagery at L-band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1): 35-44.
- Askne, J., Fransson, J., Santoro, M., Soja, M., and Ulander, L., 2013. Model-based biomass estimation of a hemi-boreal forest from multitemporal TanDEM-X acquisitions. Remote Sensing, 5(11): 5574-5597.
-Astola, H., Häme, T., Sirro, L., Molinier, M., and Kilpi, J., 2019. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223: 257-273.
- Ataee, M. S., Maghsoudi, Y., Latifi, H., and Fadaie, F., 2019. Improving Estimation Accuracy of Growing Stock by Multi-Frequency SAR and Multi-Spectral Data over Iran’s Heterogeneously-Structured Broadleaf Hyrcanian Forests. Forests, 10(8): 641.
- Chowdhury, T. A., Thiel, C., and Schmullius, C., 2014. Growing stock volume estimation from L-band ALOS PALSAR polarimetric coherence in Siberian forest. Remote Sensing of Environment, 155: 129-144.
- Golshani, P., Maghsoudi, Y., and Sohrabi, H., 2019. Relating ALOS-2 PALSAR-2 Parameters to Biomass and Structure of Temperate Broadleaf Hyrcanian Forests. Journal of the Indian Society of Remote Sensing, 47(5): 749-761.
- Gonzalez, P., Asner, G. P., Battles, J. J., Lefsky, M. A., Waring, K. M., and Palace, M., 2010. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sensing of Environment, 114(7): 1561-1575.
- Holopainen, M., Haapanen, R., Karjalainen, M., Vastaranta, M., Hyyppä, J., Yu, X., ... and Hyyppä, H., 2010. Comparing accuracy of airborne laser scanning and TerraSAR-X radar images in the estimation of plot-level forest variables. Remote Sensing, 2(2): 432-445.
- JAXA, 2014. ALOS-2/Calibration Result of JAXA Standard Products. Japan Aerospace Exploration Agency, Earth Observation Research Center. http://www.eorc.jaxa.jp/ALOS-2/en/calval/calval_index.htm
- Lee, J. S., and Pottier, E., 2009. Polarimetric radar imaging: from basics to applications. CRC press. Taylor & Francis Group. 422 p.
- Long, J., Lin, H., Wang, G., Sun, H., and Yan, E., 2019. Mapping growing stem volume of chinese fir plantation using a saturation-based multivariate method and Quad-polarimetric SAR images. Remote Sensing, 11(16): 1872.
- Meng, Q., Cieszewski, C. J., Madden, M., and Borders, B. E., 2007. K nearest neighbor method for forest inventory using remote sensing data. GIScience and Remote Sensing, 44(2): 149-165
- Morin, D., Planells, M., Guyon, D., Villard, L., Mermoz, S., Bouvet, A., and Dedieu, G., 2019. Estimation and Mapping of Forest Structure Parameters from Open Access Satellite Images: Development of a generic method with a study case on coniferous plantation. Remote Sensing, 11(11): 1275.
- Mutanga, O., Adam, E., and Cho, M. A., 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18: 399-406.
- Nguyen, L. V., Tateishi, R., Nguyen, H. T., Sharma, R. C., To, T. T., and Le, S. M., 2016. Estimation of tropical forest structural characteristics using ALOS-2 SAR data. Advance in Remote Sensing, 5: 131-144.
- Reuveni, Y., Dahan, E., Anker, Y., and Sprintsin, M., 2018. Estimating forest parameters using Landsat ETM+ spectral responses and monocultured plantation fieldwork measurements data. International Journal of Remote Sensing, 39(8): 2620-2636.
- Santos, J. R., Lacruz, M. P., Araujo, L. S., and Keil, M., 2002. Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data. International Journal of Remote Sensing, 23(7): 1217-1229.
- Shataee, S., Kalbi, S., Fallah, A., and Pelz, D., 2012. Forest attribute imputation using machine-learning methods and ASTER data: Comparison of k-NN, SVR and random forest regression algorithms. International Journal of Remote Sensing, 33(19): 6254-6280.
- Solberg, S., Astrup, R., Breidenbach, J., Nilsen, B., and Weydahl, D., 2013. Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote Sensing of Environment, 139: 60-67.
- Vastaranta, M., Niemi, M., Karjalainen, M., Peuhkurinen, J., Kankare, V., Hyyppä, J., and Holopainen, M., 2014. Prediction of forest stand attributes using TerraSAR-X stereo imagery. Remote Sensing, 6(4): 3227-3246.
- Yazdani, M., Shataee, S., Mohammadi, J., Maghsoudi, M., 2018. Comparative study of the possibility estimation of some structural quantitative attributes of Caspian forests using Radar and integrating Radar and Lidar data. RS and GIS for Natural Resources, 8(4): 109-126 (In Persian).
- Yu, X., Hyyppä, J., Karjalainen, M., Nurminen, K., Karila, K., Vastaranta, M., and Kukko, A., 2015. Comparison of laser and stereo optical, SAR and InSAR point clouds from air-and space-borne sources in the retrieval of forest inventory attributes. Remote Sensing, 7(12): 15933-15954.
- Zhao, L., Chen, E., Li, Z., Zhang, W., and Gu, X., 2017. Three-step semi-empirical radiometric terrain correction approach for PolSAR data applied to forested areas. Remote Sensing, 9(3): 269.