فرآیند مایه‌زنی نهال‌های بلوط ایرانی (Quercus brantii) با قارچ اکتومایکوریزا در شرایط کشت هیدروپونیک

نوع مقاله: علمی- پژوهشی

نویسندگان

1 کارشناس ارشد بیولوژی خاک، گروه مهندسی آب و خاک، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

2 استادیار، گروه مهندسی آب و خاک، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

چکیده

همزیستی مایکوریزایی باعث افزایش جذب عناصر غذایی پرمصرف به‌ویژه فسفر و همچنین عناصر کم مصرف می­شود. نوعی از این همزیستی مایکوریزایی، همزیستی اکتومایکوریزایی نام دارد که در شرایط طبیعی بین ریشه برخی درختان جنگلی و قارچ‌­های اکتومایکوریزا برقرار است. در این زندگی، انرژی از گیاه به قارچ و عناصر غذایی از قارچ به سمت گیاه حرکت می­‌کند. در این پژوهش، به‌منظور بررسی مقدار جذب فسفر در برگ‌­ها از طریق همزیستی قارچ اکتومایکوریزا با ریشه نهال‌­های بلوط ایرانی (Quercus brantii Lindl.) به‌ترتیب اقدام به کشت نهال­‌های یک‌‌ساله بلوط در سیستم کشت هیدروپونیک مایع (محلول کامل جانسون) و مایه­‌زنی این نهال­‌ها با قارچ‌­های اکتومایکوریزایی (.Bull) Inocybe rimosa، Singer (Quél.) Amanita crocea،Boletus comptus Simonini  و Tricholoma sp. شد. بر اساس نتایج، پس از همزیستی، ساختار و شکل ریشه‌­های همزیست به‌صورت کوتاه، ضخیم و در شکل­‌های متفاوتی مشاهده شد. همچنین، اثر مایه‌­زنی قارچ اکتومایکوریزا بر جذب فسفر توسط نهال­‌های بلوط در سطح اطمینان 99 درصد معنی­دار شد. مقایسه میانگین در تیمارهای مایه­‌زنی شده با قارچ‌­های اکتومایکوریزا نسبت به تیمار شاهد نشان داد که جذب فسفر بین 2/5 تا 4/4 برابر افزایش یافته بود. به‌طور کلی، استفاده از قارچ­‌های اکتومایکوریزا (کود زیستی) با کمک به ریشه درختان در افزایش جذب آب و عناصر غذایی می­‌توانند زنده‌­مانی نهال‌­های بلوط را در عرصه‌­های جنگلی افزایش دهد. 

کلیدواژه‌ها


عنوان مقاله [English]

Inoculation process for Brant`s oak (Quercus brantii Lindl.) seedling with Ectomycorrhizal fungi in hydroponic culture condition

نویسندگان [English]

  • Behnaz Yousefshahi 1
  • Masoud Bazgir 2
1 M.Sc. Soil Biology, Department of Water and Soil Engineering, Faculty of Agriculture, Ilam University, Ilam, Iran
2 Assistant Prof., Department of Water and Soil Engineering, Faculty of Agriculture, Ilam University, Ilam, Iran
چکیده [English]

Mycorrhizal symbiosis increases micro and macronutrients especially phosphorous. Ectomycorrhizal symbiosis is kind of mycorrhizal symbiosis, which occur between the roots of some forest trees and ectomycorrhiza fungi. In this symbiosis, energy transfers from plant to fungus and nutrient elements from fungus to plant. In order to study the amount of phosphorous uptake in leaves through the symbiosis of ectomycorrhizal fungi with Brant`s oak (Quercus brantii Lindl.) seedling roots, we plant one year oak seedling in hydroponic culture system (Johnson complete solution) and then inoculate these seedlings with ectomycorrhizal fungi of Inocybe rimosa (Bull.), Amanita crocea (Quél.) Singer, Boletus comptus Simonini, Tricholoma sp.According to the results, after symbiosis the structure and shape of the symbiotic roots changed into the short, thick and different shapes. Inoculum of these fungi affected significantly (α = 0.01) on phosphorous uptake by oak seedlings. Mean comparison showed that phosphorus uptake has increased 2.5 and 4.4 times in inoculum treatments than control treatment. Application of ectomycorrhizal fungi (biological fertilizer) can help tree roots by increasing water and nutrient elements uptake resulting from increasing oak seedlings survival in forest ecosystem.

کلیدواژه‌ها [English]

  • Ectomycorrhizal fungi
  • phosphorous uptake
  • Zagros forests
- Agerer, R., 1986. Studies on ectomycorrhizae. II: Introducing remarks on characterization identification. Mycotaxon, 26: 473-492.

- Agerer, R., 1995. Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification: 685-734. In: Varma, A. and Hock, B. (Eds.). Mycorrhiza. Springer, 749p.

- Agerer, R., 1997-2002. Color Atlas of Ectomycorrhizae. Einhorn-Verlag Eduard Dietenberger GmbH, Munchen, 345p.

- Bahram, M., Asef, M.R., Zarre, S.H., Abbasi, M. and Reidl, S., 2006. Addition to the knowledge of Amanita (Agaricales, Pluteaceae) from Iran. Rostaniha, 7(2): 107-119.

- Bougher, N.L., Grove, T.S. and Malajczuk, N., 1990. Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytologist, 114(1): 77-85.

- Brundrett, M.C., 2002. Coevoluti on of roots and mycorrhizas of land plants. New Phytologist, 154(2): 275-304.

- Chung, H.C., Kim, D.H., Cho, N.S. and Lee, S.S., 2003. Observation and Distribution of Ectomycorrhizal Fungi in Pinus Roots. Mycobiology, 31(1): 1-8.

- Cripps, C.L., 1997. The genus Inocybe in Montana aspen stands. Mycologia, 89: 670-688.

- Doyle, J.J. and Doyle, J.L.,1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.

- Duponnois, R. and Plenchette, C., 2003. A mycorrhiza helper bacterium enhancesectomycorrhizal and endomycorrhizal symbiosis ofAustralian Acacia species. Mycorrhiza, 13(2): 85-91.

- Emami, A., 1996. Plant Analysis Methods (Volume 1). Agricultural Research and Education Organization, Tehran, 195p (In Persian).

- Estadès, A. and Lannoy, G., 2004. Les bolets européens. Bulletin Mycologique et Botanique Dauphiné-Savoie, 44(3): 3-79.

- Harvey, A.E., Larsen, M.J. and Jurgensen, M.F., 1976. Distribution of ectomycorrhizae in a mature douglas-fir/larch soil in western Montana. Forest Science, 22(4): 393-633.

- Heim, A., Brunner, I., Frey, B., Frossard, E. and Luster, J., 2001. Root exudation, organic acids, and element distribution in roots of Norway spruce seedlings treated with aluminum in hydroponics. Journal of Plant Nutrition and Soil Science, 164(5): 519-526.

- Ingleby, K., Mason, P.A., Last, F.T. and Fleming, L.V., 1990. Identification of Ectomycorrhizas. HMSO, London, 112p.

- Itoo, Z.A. and Reshi, Z.A., 2013. The multifunctional role of ectomycorrhizal associations in forest ecosystem processes. The Botanical Review, 79(3): 371-400.

- Jacobsson, S., 2008. Key to Inocybe. In: Knudsen H, Vesterholt J (Eds), Funga Nordica. Agaricoid, boletoid and cyphelloid genera: 868 -906. Nordsvamp, Copenhagen.

- Johnson, C.M., Stout, P.R., Broyer, T.C. and Carlton, A.B., 1957. Comparative chlorine requirements of different plant species. Plant and Soil, 8(4): 337-353.

- Kim, H.K., Kim, Y.S., Seok, S.J., Kim, G.P. and Cha, D.Y., 1998. Artificial cultivation of Tricholoma giganteum collected in Korea (I)-Morphological charateristics of fruitbody and environmental condition in habitat of T. giganteum. The Korean Journal of Mycology, 26(2): 182-186.

- Kubikova, J., 1967. Contribution to the classification of root systems of woody plants. Preslia, 39: 236-243.

- Pande, V., Palni, U.T. and Singh, S.P., 2004. Species diversity of ectomycorrhizal fungi associated with temperate forest of western Himalaya: a preliminary assessment. Current Science, 86(12): 1619-1623.

- Piche, Y., Peterson, R.L. and Ackerley, C.A., 1983. Early development of ectomycorrhizal short roots of pine. Scanning Electron Microscopy, 3: 1467-1474.

- Pushpa, H., Purushothama, K.B. and Ramesh Thirumalesh D.H., 2014. Taxonomic studies and molecular characterisation of Tricholoma giganteum and Calocybe indica isolates from Bangalore. Journal of Biochemical Technology, 3(5): 218-220.

- Rutto, K.L., Mizutani, F. and Kadoya, K., 2002. Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Scientia horticulturae, 94(3): 285-295.

- Sagheb Talebi, Kh., Sajedi, T. and Pourhashemi, M., 2014. Forests of Iran: A Treasure from the Past, A Hope for the Future. Springer, 152p.

- Simonini, G., 1998. Qualche specie rara o poco conosciuta della famiglia Boletaceae- In: Fungi non delineati. University of Michigan Press, Michigan, 56p.   

- Smith, S.E. and Read, D.J., 2008. Mycorrhizal Symbiosis. Third edition, Academic Press, London, 605p.

- Stefan, K., Furst, A., Hacker, R. and Bartels, U., 1997. Forest foliar condition inEurope- results of large-scale foliar chemistry surveys. EC-UNECE, Austrian Federal Forest Research Centre, Brussels, 207p.