تولید و ارزیابی برخی ویژگی‌های ریخت‌شناسی نونهال‌های میکوریزی پسته جنگلی (Pistacia vera)

نوع مقاله: علمی- پژوهشی

نویسندگان

1 دانشجوی دکتری جنگل‌شناسی و اکولوژی جنگل، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 دانشیار، گروه جنگل‌شناسی و اکولوژی جنگل، دانشکده علوم جنگل، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 دانشیار پژوهش، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

زادآوری پسته جنگلی (Pistacia vera L.) که جنگل‌های طبیعی آن در مناطق خشک و نیمه‌خشک ایران پراکنش دارند، به‌دلیل توسعه تخریب ناشی از فعالیت‌های انسان و افزایش تنش‌های محیط به‌شدت کاهش یافته است. یکی از شیوه‌های نوین بازسازی و احیای جنگل‌های تخریب‌شده، استفاده از فن‌آوری تولید نهال میکوریزی در طرح‌های جنگل‌کاری است. پژوهش پیش‌رو با هدف تولید نهال میکوریزی پسته جنگلی، ارزیابی برخی ویژگی‌های ریخت‌شناسی نونهال آن و برآورد هزینه تولید انجام شد. جمع‌آوری بذر از پنج درخت مادری در یک توده خالص پسته جنگلی در منطقه قازان‌قایه (استان گلستان) انجام شد. بذرهای تازه جوانه‌زده پس از تلقیح شدن با Funneliformis mosseae C. Walker & A. Schuessler (= Glomus mosseae T.H. Nicolson & Gerd.) که قارچ میکوریزی غالب در ریزوسفر درختان مادری بود، در گلدان کاشته شدند. پنجاه نونهال میکوریزی و 50 نونهال شاهد طی یک فصل رویش در شرایط فضای باز (خارج از گلخانه) رشد کردند. تفاوت ویژگی‌های ریخت‌شناسی نونهال‌های میکوریزی و شاهد ازنظر میانگین‌های طول ساقه، قطر یقه، تعداد جوانه و تعداد شاخه در سطح اطمینان 99 درصد معنی‌دار بود. درنتیجه همزیستی میکوریزی، میانگین رشد طولی نونهال‌ها حدود 60 درصد و میانگین رشد قطر یقه آنها حدود 40 درصد افزایش یافت. علاوه‌بر این، تعداد جوانه نونهال‌های میکوریزی حدود 67 درصد و تعداد شاخه آنها حدود 51 درصد بیشتر از نونهال‌های شاهد بود. هزینه تولید نونهال میکوریزی 2/3 برابر بیشتر از نونهال‌های شاهد برآورد شد. تلفات نونهال‌های میکوریزی 10 درصد و تلفات نونهال‌های شاهد 30 درصد بود. بین درصد کلونیزاسیون قارچ با ویژگی‌های ریخت‌شناسی نونهال‌های پسته جنگلی همبستگی معنی‌داری وجود داشت. برای مدیریت پایدار جنگل‌های طبیعی پسته که امروزه با کاهش شدید زادآوری مواجه هستند، می‌توان با استفاده از فن‌آوری تولید نهال میکوریزی و کاهش تلفات، هزینه جنگل‌کاری را کاهش داد و تعداد نهال مستقرشده را افزایش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Producing and evaluating some morphological characteristics of common pistachio (Pistacia vera L.) Mycorrhizal seedlings

نویسندگان [English]

  • Touran Feyzi Kamareh 1
  • Ramin Rahmani 2
  • Hasan Soltanloo 3
  • Mohammad Matinizade 4
1 Ph.D. Student Silviculture and Forest Ecology, Faculty of Forest Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Associate Prof., Department of Silviculture and Forest Ecology, Faculty of Forest Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Associate Prof., Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Associate Prof., Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Regeneration of natural Pistachio forests of Iran distributed in arid and semi-arid regions have been disturbed by human activities and environmental stresses. One of the modern methods of reforestation in disturbed forests is utilization of mycorrhizal seedlings in reforestation projects. In this research mycorrhizal seedlings of common pistachio (Pistacia vera L.) was produced under environmental condition and fungi symbiosis effect on one year seedling growth characteristics were evaluated. At the first step, the most frequent species of arbuscular mycorrhizae were identified Funneliformis mosseae C. Walker & A. Schuessler (= Glomus mosseae T.H. Nicolson & Gerd.) and seeds of host trees were gathered for cultivation. After a growing season, some of the morphological characteristics such as stem length, collar diameter, shoot numbers and number of branches were calculated within 100 seedlings (50 seedlings per treatment) and compared with control. A significant different were observed between studied parameters (p < 0.01). Results revealed 60% stem length, 40% collar diameter, 67% bud number and 51% branches numbers increment in compare with control. The producing cost per mycorrhizal seedling was 2.3 times higher than non mycorrhizal seedling. Wasting percentage per seedling was 10% for mycorrhizal seedlings and 30% for non mycorrhizal seedlings. Significant correlation was observed between colonization percentage and morphological factors of pistachios seedling. These results have a sharp message for utilization of mycorrhizal seedlings in rehabilitation project of this species.

کلیدواژه‌ها [English]

  • Arid and semi-arid regions
  • Inoculation
  • regeneration
  • seed
- Abbaspour, H., 2010. Investigation of the effects of vesicular arbuscular mycorrhiza on mineral nutrition and growth of Carthamus tincotorius under salt stress condition. Russian Journal of Plant Physiology, 57: 526-31.

- Barea, J.M., Azcón, R. and Azcón-Aguilar, C., 2011. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81: 343-351.

- Biermann, B. and Linderman, R.G., 1981. Quantifying vesicular-arbuscular mycorrhizae: Proposed method towards standardization. New Phytologist, 87: 63-67.

- Caproni, A.L., Franco, A.A., Berbara, R.L.L., Granha, J.R.O. and Souchie, E.L., 2007. Arbuscular mycorrhizal fungi occurrence in bauxite mining residue planted to tree species. Acta Botanica Barcinonensia, 21: 99-106.

- Caravaca, F., Barea, J.M. and Roldan, A., 2002. Synergistic influence of an arbuscular mycorrhizal fungus and organic amendment on Pistacialentiscus L. seedlings afforested in a degraded semiarid soil. Soil Biology and Biochemistry, 34: 1139-1145.

- Closa, A. and Goicoechea, N., 2011. Infectivity of arbuscular mycorrhizal fungi in naturally regenerating, unmanaged and clear-cut beech forests. Pedosphere, 21(1): 65-74.

- Fallahian, F., Abbaspoor, H., Hussain, F. and Khavarinezhad, R., 2007. The effect of endomycorrhizal fungi on mineral nutrition Pistacia vera in salinity. Iranian Journal of Research and Development, 67: 82-86 (In Persian).

- Feyzi Kamareh, T., Shirvany, A., Matinizadeh, M., Etemad, V. and Khoshnevis, M., 2011. Arbuscular mycorrhizal fungi in endemic and native tree species, wild pear (Pyrus glabra) and maple (Acer cinerascens). African Journal of Agricultural Research, 6(18): 4308-4317.

- Finlay, R.D., 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of ExperimentalBotany, 59: 1115-1126.

- Fitter, A.H., 2005. Darkness visible: reflections on underground ecology. Journal of Ecology, 93: 231-243.

- Gemma, J.N., Koske, R.E., Roberts, E.M. and Jackson, N., 1997. Enhanced establishment of bentgrasses by arbuscular mycorrhizal fungi. Journal of Turfgrass Science, 73: 9-14.

- Green, J.J., Baddeley, J.A., Cortina, J. and Watson, C.A., 2005. Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatment. Journal of Arid Environment, 61: 1-12.

- INVAM, International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi. Available at: http://invam.wvu.edu/the-fungi.

- Karagiannidis, N., Nikolaou., N., Ipsilantis, I. and Zioziou, E., 2007. Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition. Mycorrhiza,18: 43-50.

- Karimidust, A., 2001. Quantitative and qualitative study of natural stands of pistachio in the region Marave-tappe, the east of Golestan. Report of Research Project, Published by Research Institute of Forests and Rangelands, Tehran, 75p (In Persian).

- Koske, R.E. and Gemma, J.N., 1997. Mycorrhizae and succession in plantings of beach grass in sand dunes. American Journal of Botany, 84(1): 118-130.

- Kramer, P.J. and Boyer, J.S., 1995. Water Relations of Plants and Soils. Academic Press, San Diego, 495p.

- Kungu, J.B., Lasco, R.D., Dela Cruz, L.U., Dela Cruz, R.E. and Husain, T., 2008. Effect of vesicular arbuscular mycorrhiza (Vam) fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pakistan Journal of Botany, 40(5): 2217-2224.

- Marschner, H. and Dell, B., 1994. Nutrient uptake in mycorrhizal simbiosis. Plant and Soil, 159: 89-102.

- Marulanda, A., Porcel, R., Barea, J.M. and Azcón, R., 2007. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microbial Ecology, 54(3): 543-552.

- Matinizade, M., Khoshnevis, M., Teimouri, M., Shirvany, A., Iranmanesh, Y., Alizadeh,T., Omid, R. and  Beazainezhad, A.M., 2016. Evaluation of arbuscular mycorrhiza symbiosis of several different species of trees and shrubs of Zagros (second phase) and mycorrhizal seedling production in three species of Cerasus mahaleb, Acer cineracens and Pyrus glabra. Report of Research Project, Under Publishe by Research Institute of Forests and Rangelands, Tehran,105 (In Persian).

- Miller, R.M., Reinhardt, D.R. and Jastrow, J.D., 1995. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia, 103: 17-23.

- Mirzaee, J., Akbrynia, M., Mohammadi Goltaphe, E., Sharifi, M. and Rezaei Danes, Y., 2011. The impact of mycorrhizal fungi on some morphological and physiological characteristics of Pistacia khinjuk seedlings under drought stress. Iranian Journal of Forest and Poplar Research, 19(2): 291-300 (In Persian).

- Mobayen, S. and Tregubov, V., 1970. Guide to the Map of the Natural Vegetation of Iran. University of Tehran Press, Tehran, 60p (In Persian).

- Morton, J.B. and Redecker, D., 2001. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia, 93: 181-195.

- Navarro, G.A., Del, P., Banón, Á.S., Morte, A. and Sánchez-Blanco, M.J., 2011. Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. Plants. Mycorrhiza, 21: 53-64.

- Palenzuela, J., Azcon, C., Figueroa, D., Caravaca, F., Roldan, A. and Barea, J.M., 2002. Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composed residue application on transplant performance and mycorrhizal development in a desertified soil. Biology and Fertility of Soils, 36: 170-175.

- Rajni, G. and Mukerji, K.G., 2002. Techniques for the isolation of VAM/AM fungi in soil: 1-6. In: Mukerji, K.G, Manoharachary, C. and Chaloma, B.P. (Eds.). Techniques in Mycorrhizal Studies. Kluwer Academic Publishers, London, 554p.

- Requena, N., Jeffries, P. and Barea, J.M., 1996. Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Applied and Environmental Microbiology, 62: 842-847.

- Rueda-Puente, E.O., Murillo-Amador, B., Castellanos Cervantes, T., García-Hernández, J.L., Tarazòn- Herrera, M.A., Medina, S.M. and Barrera, L.E.G., 2010. Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D’Arcy and Eshbaugh) germination under stressing abiotic conditions. Plant Physiology and Biochemistry, 48(8): 724-730.

- Rutto, K.L. and Mizutani, F., 2006. Effect of mycorrhizal inoculation and activated charcoal on growth and nutrition in peach (Prunus persica Batsch) seedlings treated with peach root-bark extracts. Journal of the Japanese Society for Horticultural Science, 75(6): 463-468.

- Schenck, N.C. and Perez, Y., 1988. Manual for Identification of VA Mycorrhizal Fungi, International Culture Collection of VA Mycorrhizal Fungi. University of Florida Press, Florida, 241p.

- Smith, S.E. and Read, D.J., 2008. Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants: 145-187. In: Smith, S.E. and Read, D.J. (Eds.). Mycorrhizal Symbiosis. Academic Press, London, 800p.

- Urgiles, N., Straub, A., Loján, P. and Schüßler, A., 2014. Cultured arbuscular mycorrhizal fungi and native soil inocula improve seedling development of two pioneer trees in the Andean region. New Forests, 45(6): 859-874.

- Wu, Q.S., Zou, Y.N. and Huang, Y.M., 2013. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecology, 6: 37-43.

- Xiancan, Z., Fengbin, S. and Hongwen, X., 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20(5): 325-332.