بررسی امکان برآورد حجم سرپای جنگل با استفاده از داده‌های سنجنده LISS_IV ماهواره‌ IRS_P6 (مطالعه موردی: لیره‌سر تنکابن)

نوع مقاله : علمی- پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد جنگل‌داری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس

2 دانشکده منابع طبیعی، دانشگاه تربیت مدرس

3 کارشناس ارشد پژوهش، مرکز تحقیقات کشاورزی و منابع طبیعی استان کردستان

4 استادیار، دانشکده منابع طبیعی، دانشگاه کردستان

چکیده

برآورد حجم سرپای جنگل اهمیت زیادی از نظر کاربردهای آن برای آگاهی از وضعیت جنگل و نحوه‌ عملکرد آن، برآورد میزان تولید، پیش‌بینی و مدل‌سازی فشارهای وارده به جنگل، مسائل اقتصادی و زیست‌محیطی و برنامه‌ریزی در جنگل دارد. هدف از تحقیق حاضر، ارزیابی برآورد حجم سرپای جنگل با استفاده از داد‌ه‌های طیفی سنجنده‌ LISS_IV ماهواره‌ IRS_P6 در بخشی از جنگلهای حوضه آبخیز 35 (لیره‌سر) با مساحت 1240 هکتار در استان مازندران بود. به این منظور تعداد 87 قطعه نمونه زمینی دایره‌ای به ابعاد 1/0 هکتار به روش منظم- تصادفی (سیستماتیک) برداشت و حجم سرپا در هر قطعه نمونه محاسبه گردید. داده‌‌های رقومی متناظر با قطعات نمونه زمینی از باندهای طیفی استخراج و به‌عنوان متغیرهای مستقل و حجم سرپا به‌عنوان متغیر وابسته در نظر گرفته شدند. با استفاده از رگرسیون گام به گام بهترین مدل‌های رگرسیونی تولید و با در نظر گرفتن معیارهای مجذور میانگین مربعات خطا، همبستگی، مقدار F و اریبی مدل مناسب (Mb3044/0Mb3 – 19/0 - 64/8LogV =) انتخاب شد. در مدل یادشده جذر میانگین مربعات خطا 5/32 درصد، ضریب همبستگی 83/0 و مقدار اریبی 6/12 درصد بود که آزمون t معنی‌دار بودن این مقدار اریبی را رد کرد. نتایج نشان داد که داده‌های طیفی این ماهواره برای برآورد حجم سرپای جنگل دارای قابلیت متوسطی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Forest stand volume estimation using satellite IRS_P6 (LISS_IV) data (Case study: Lirehsar, Tonekabon)

نویسندگان [English]

  • Zahra Azizi 1
  • Akbar Najafi 2
  • Parviz Fatehi 3
  • Mahtab Pirbavaghar 4
1 M.Sc. student of Forestry, faculty of Natural Resources, Tarbiat Modares University
2 Assistance Prof., Department of forestry, Faculty of Natural Resources, Tarbiat Modares University
3 Research expert, Research Center of Agriculture and Natural Resources of Kurdistan province
4 Assistant Prof., Department of forestry, Faculty of Natural Resources, Kurdistan University
چکیده [English]

Stand volume is an important criterion in forest sciences for monitoring status and function of forests, estimation of productivity, prediction and modeling of forest disturbance, economic and environmental issues and forest planning. The aim of this research is evaluation of the LISS_IV sensor of IRS_P6 satellite data ability for forest timber volume estimation. The study area (1240 ha) is located in watershed No. 35 (Lirehsar) of Mazandaran province. Using systematic random method, 87 circular plots with 0.1 ha area were measured to study the relationship between forest stand volume and satellite data. Correspondent digital data to plots were extracted from spectral and considered as independent variables. Original stand volume data, square root and logarithm of them were considered as dependent variables. Using stepwise regression, the best model (LogV= 8.64 – 0.19Mb3 – 0.044Rb3) respect to some criteria including RMSE, bias and correlation coefficient was chosen, while the value of criteria were 32.5%, 12.6% and 0.83%, respectively. Result showed that spectral data of the mentioned sensor have a moderate potential for stand volume estimation.

کلیدواژه‌ها [English]

  • LISS-IV
  • growing stock
  • regression analysis
  • spectral data
  • Lirehsar
- بی‌نام، 1375. طرح تجدید نظر چهارم طرح جنگل‌داری لیره‌سر. اداره کل منابع طبیعی استان مازندران.
- خرمی، ر.، درویش‌صفت، ع. و نمیرانیان، م.، 1386. بررسی قابلیت داده‌های ماهواره‌ای Landsat7 ETM+ در برآورد حجم سرپای توده‌های راش. مجله منابع طبیعی ایران، 60(4): 1289-1281.
- زبیری، م.، 1379. آماربرداری در جنگل (اندازه‌گیری درخت و جنگل). انتشارات دانشگاه تهران، 401 صفحه.
- علوی‌پناه، ک.، 1385. کاربرد سنجش از دور در علوم زمین (علوم خاک). انتشارات دانشگاه تهران، 438 صفحه.
- محمدی، ج.، 1386. بررسی امکان برآورد برخی مشخصه‌های کمی جنگل به‌منظور ایجاد مدل پیش‌بینی مکانی با استفاده از داده‌های طیفی ماهواره‌ای (مطالعه موردی در جنگلهای بلوط لوه گرگان). پایان‌نامه کارشناسی‌ ارشد دانشگاه علوم کشاورزی و منابع طبیعی گرگان، 71 صفحه.
- Astola, H., Bounsay Thip, C., Ahola J., Hame, T., Parmes, E., Sirro, L. and Veikkanen, B., 2004. Forest parameter estimation from high resolution remote sensing data. Proceedings of 20th ISPRS Congress, Istanbul, Turkey, 12-23 July: 335-341.
- Duursma, R.A., Marshall, J.D., Robinson, A.P. and Pangle, R.E., 2007. Description and test of a simple process-based model of forest growth for mixed-species stands. Ecological Modelling, 203: 297-311.
- Feldpausch, T.R., McDonald, A.J., Passos, C.A.M., Lehmann, J. and Riha, S.J., 2006. Biomass, harvestable area, and forest structure estimated from commercial timber inventories and remotely sensed imagery in southern Amazonia. Forest Ecology and Management, 233: 121-132.
- Feng, X., Liu, G., Chen, J.M., Chen, M., Liu, J., Ju, W.M., Sun, R. and Zhou, W., 2007. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85: 563-573.
- Fournier, R.A., Luther, J.E., Guindon, L., Lambert, M.C., Piercey, D., Hall R.J. and Wulder, M.A., 2003. Mapping above-ground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec. Canadian Journal of Forest Research, 33: 1846-1863.
- Franco-Lopez, H., Ek, A.R. and Bauer, M.E., 2001. Estimation and mapping of forest stand density, volume, and cover type using the K-nearest-neighbors method. Remote Sensing of Environment, 77: 251–274.
- Gemell, E.M., 1995. Effects of forest cover, terrain and scale on timber volume estimation with thematic map per data in a Rock Mountain Site. Remote Sensing of Environment, 51(2): 291-350.
- Hagner, O., 1990. Computer aided forest stand delineation and inventory based on satellite remote sensing. In: Proceedings of the SNS/IUFRO Workshop on the Usability of Remote Sensing for Forest Inventory and Planning, Umea 26–28 February. Remote Sensing Laboratory, SwedishUniversity of Agricultural Sciences, Report 4: 43-47.
- Heiskanen, J., 2006. Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. International Journal of Remote Sensing, 27(6): 1135-1158.
- Holmgren, J., Joyce, S., Nilsson, M. and Olsson, H., 2000. Estimating stem volume and basal area in forest compartments by combining satellite image data with field data. Scandinavian Journal of forest Research, 15(1): 103-111.
- Jensen, J.R., 1986. Introduction Digital Image Processing, A Remote Sensing Perspective. Cliffs, New Jersy, 379 p.
- Katila, M. and Tomppo, E., 2001. Selecting estimation parameters for the Finnish multi-source national forest inventory. Remote Sensing of Environment, 76(1): 16–32.
- Keeling, H.C. and Phillips, O.L., 2007. The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16: 618-631.
- Landsberg, J.J. and Waring, R.H., 1997. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95: 209-228.
- Makela, H. and Pekkarinen, A., 2004. Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, 196: 245–255.
- Miksys, V., Varnagiryte-Kabasinskiene, I., Stupak, I., Armolaitis, K., Kukkola, M. and Wojcik, J., 2007. Above-ground biomass functions for Scots pine in Lithuania. Biomass and Bioenergy, 31: 685-692.
- Narayan, C., Fernandes, P.M., van Brusselen, J. and Schuck, A., 2007. Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto protocol. Forest Ecology and Management, 251: 164-173.
- Ranta, E., Rita, H. and Kouki, J., 1999. Biometria, Helsinki: Yliopistopaino. 569 p.
- Ripple, W.J., Wang, S., Isaacson, D.L. and Paine, D.P., 1991. A preliminary comparison of Landsat Thematic Mapper and SPOT-l HRV multispectral data for estimating coniferous forest volume. International Journal of Remote Sensing, 12(9): 1971–1977.
- Scheller, R.M. and Mladenoff, D.J., 2004. A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecological Modelling, 180: 211-229.
- Silversides, C.R., 1982. Energy from forest biomass – its effect on forest management practices in Canada. Biomass, 2: 29-41.
- Stupak, I., Clarke, N. and Lunnan, A., 2005. Sustainable use of forest biomass for energy. In: Proceedings of the WOOD-EN-MAN Session at the Conference Nordic Bioenergy, Trondheim, Norway27 October 2005. Biomass and Bioenergy 2007, 31: 665.
- Syphard, A.D., Yang, J., Franklin, J., He, H.S. and Keeley, J.E., 2007. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands. Environmental Modelling & Software, 22: 1641-1653.
- Szwagrzyk, J. and Gazda, A., 2007. Above-ground standing biomass and tree species diversity in natural stands of Central Europe. Journal of Vegetation Science, 18: 555-562.
- Tomppo, E., Nilsson, M., Rosengren, M., Aalto, P. and Kennedy, P., 2002. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment, 82: 156–171.
- Top, N., Mizoue, N., Ito, S., Kai, S., Nakao, T. and Ty, S., 2006. Re-assessment of woodfuel supply and demand relationships in Kampong Thom province, Cambodia. Biomass and Bioenergy, 30: 134-143.
- Urquiza-Haas, T., Dolman, P.M. and Peres, C.A., 2007. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: Effects of forest disturbance. Forest Ecology and Management, 247: 80-90.
- Wulder, M.A. and Franklin, S.E., 2007. Understanding forest disturbance and spatial pattern: remote sensing and GIS approaches, CRC Press Publishers, Canada: 246 p.
- Wulder, M.A., White, J.C., Fournier, R.A., Luther, J.E. and Magnussen, S., 2008. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Sensors, 8: 529-560.
- Xian Wen, Z., Chonggui, L., Lin, S., Yonglin, T. and Kaixian, Y., 2002. Important progress on estimating forest resources, Reality, model and parameter estimation-the forestry scenario. Sesimbra-Portugal, 2-5 June: 234 p.
- Zhao, M. and Zhou, G., 2005. Estimation of biomass and net primary productivity of major planted forest in China based on forest inventory data. Forest Ecology and Management, 207: 295-313.