- Bandara, K.R., Samarakoon, L., Shrestha, R.P., Kamiya, Y., 2011. Automated generation of digital terrain model using point clouds of digital surface model in forest area. Remote Sensing, 3: 845-858.
- Bottalico, F., Travaglini, D., Chirici, G., Marchetti, M., Marchi, E., Nocentini, S., Corona, P., 2014. Classifying silvicultural systems (coppices vs. high forests) in Mediterranean oak forests by Airborne Laser Scanning data. European Journal of Remote Sensing, 47(1): 437-460
- Brahma, B., Nath, A.J., Sileshi, G.W., Das, A., 2018., Estimating biomass stocks and potential loss of biomass carbon through clear-felling of rubber plantations. Biomass and Bioenergy, 115: 88-96.
- Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145: 87-99.
- Fakhri, S.A., Latifi, H., 2021. A Consumer Grade UAV-Based Framework to Estimate Structural Attributes of Coppice and High Oak Forest Stands in Semi-Arid Regions. Remote Sensing, 13(21):4367.
- Fieber, K.D., Davenport, I.J., Tanase, M.A., Ferryman, J.M., Gurney, R.J., Becerra, V.M., Walker, J.P., Hacker, J.M., 2015. Validation of Canopy Height Profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment.
ISPRS Journal of Photogrammetry and Remote Sensing, 104: 144-157.
- Ghasemi, M., Latifi, H., Pourhashemi, M., 2022. A novel method for detecting and delineating coppice trees in UAV images to monitor tree decline. Remote Sensing, 14(23): 5910.
- Goodbody, T.R., Coops, N.C., White, J., 2019. Digital aerial photogrammetry for updating area-based forest inventories: a review of opportunities, challenges, and future directions. Current Forestry Reports, 5: 55-75.
- Guimarães., Pádua, L., Marques, P., Silva, N., Peres, E., Sousa, J. J., 2020. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sensing, 12 (6): 1046.
- Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., Dalponte, M., van Ewijk, K.Y., Forrester, D.I., Haeni, M, 2017. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23: 177-190.
- Krause, S., Sanders, T.G., Mund, J.-P., Greve, K., 2019. UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sensing, 11: 758.
- Lewis, S.L., Sonké, B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., Van Der Heijden, G.M., Phillips, O.L., Affum-Baffoe, K., Baker, T.R., Banin, L., 2013. Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B, 368: 20120295.
- Lizuka, K., Yonehara, T., Itoh, M., Kosugi, Y., 2018. Estimating tree height and diameter at breast height (DBH) from digital surface models and orthophotos obtained with an unmanned aerial system for a Japanese cypress (Chamaecyparis obtusa) forest. Remote Sensing, 10 (1): 13.
- Machimura, T., Fujimoto, A., Hayashi, K., Takagi, H., Sugita, S., 2021. A novel tree biomass estimation model applying the pipe model theory and adaptable to UAV-derived canopy height models. Remote Sensing, 12: 258.
- Maltamo, M., Næsset, E., Vauhkonen, J., 2014. Forestry Applications of Airborne Laser Scanning. Springer Verlag. ISBN: 978-94-017-8663-82014.
- Mlambo, R., Woodhouse, I.H., Gerard, F., Anderson, K., 2017. Structure from motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests, 8(3): 68.
- Ota, T., Ogawa, M., Shimizu, K., Kajisa, T., Mizoue, N., Yoshida, S., Takao, G., Hirata, Y., Furuya, N., Sano, T., 2015. Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest. Forests, 6: 3882-3898.
- Panagiotidis, D., Abdollahnejad, A., Surový, P., Chiteculo, V., 2017. Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing, 38: 2392-2410.
- Pothong, T., Elliott, S., Chairuangsri, S., Chanthorn, W., Shannon, D.P.; Wangpakapattanawong, P., 2021. New allometric equations for quantifying tree biomass and carbon sequestration in seasonally dry secondary forest in northern Thailand. New Forests, 53: 17-36.
- Puliti, S., Breidenbach, J., Astrup, R., 2020. Estimation of forest growing stock volume with UAV laser scanning data: can it be done without field data? Remote Sensing, 12: 1245.
- Puliti, S., Solberg, S., Granhus, A., 2019. Use of UAV photogrammetric data for estimation of biophysical properties in forest stands under regeneration. Remote Sensing, 11: 233.
- Safonova A., Guirado E., Maglinets Y., Alcaraz-Segura D., Tabik S., 2021. Olive Tree Biovolume from UAV Multi-Resolution Image Segmentation with Mask R-CNN. Sensors, 21(5):1617.
- Zagalikis, G., Cameron, A.D., Miller, D., 2005. The application of digital photogrammetry and image analysis techniques to derive tree and stand characteristics. Canadian Journal of Forest Research, 35: 1224-1237.