- Alatorre, L.C., Sánchez-Andrés, R., Cirujano, S., Beguería, S. and Sánchez-Carrillo, S., 2011. Identification of mangrove areas by remote sensing: the ROC curve technique applied to the northwestern Mexico coastal zone using Landsat imagery. Remote Sensing, 3(8): 1568-1583.
- Amiri, S.N., Sajadi, J. and Sadough Vanini, S.H., 2011. Application of vegetation indices derived from IRS data for detecting the Avicennia forest area near the south Pars Oil Apparatus. Environmental Sciences, 8(1): 69-84 (In Persian with English summary).
- Baloloy, A.B., Blanco, A.C., Sharma, S. and Nadaoka, K., 2021. Development of a rapid mangrove zonation mapping workflow using Sentinel 2-derived indices and biophysical dataset. Frontiers in Remote Sensing, 2: 730238.
- Baloloy, A.B., Blanco, A.C., Sta. Ana, R.R.C. and Nadaoka, K., 2020. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 166: 95-117.
- Binh, N.A., Hauser, L.T., Hoa, P.V., Thao, G.T.P., An, N.N., Nhut, H.S., ... and Verrelst, J., 2022. Quantifying mangrove leaf area index from Sentinel-2 imagery using hybrid models and active learning. International Journal of Remote Sensing, 43(15-16): 5636-5657.
- Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R.M. and Thomas, N., 2022. Global Mangrove Watch: Updated 2010 mangrove forest extent (v2.5). Remote Sensing, 14(4): 1034.
- Bunting, P., Rosenqvist, A., Lucas, R.M., Rebelo, L.M., Hilarides, L., Thomas, N., ... and Finlayson, C.M., 2018. The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sensing, 10(10): 1669.
- Chen, N., 2020. Mapping mangrove in Dongzhaigang, China using Sentinel-2 imagery. Journal of Applied Remote Sensing, 14(1): 014508.
- Congalton, R.G. and Green, K., 2019. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition. CRC Press, Boca Raton, Florida, 346p.
- Danehkar, A., Mahmoudi, B., Sabaei, M., Ghadirian, T., Asadolahi, Z., Sharifi, N. and Petrosian, H., 2012. Sustainable mangrove management. Final Report of Iran’s national Research Project, Published by Forests, Range and Watershed Management Organization, Tehran, 624p (In Persian).
- Daughtry, C.S.T., Walthall, C.L., Kim, M.S., de Colstoun, E.B. and McMurtrey, J.E., 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2): 229-239.
- Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M. and Souza-Filho, P.W.M., 2019. Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7): 808.
- FAO, 2020. Global Forest Resources Assessment 2020: Main report. Rome, 186p.
- Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Datta Majumdar, S., Samanta, S., ... and Hazra, S., 2018. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5: 1129-1139.
- Heumann, B.W., 2011. An object-based classification of mangroves using a hybrid decision tree—support vector machine approach. Remote Sensing, 3(11): 2440-2460.
- Jia, M., Wang, Z., Wang, C., Mao, D. and Zhang, Y., 2019. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery. Remote Sensing, 11(7): 2043.
- Mafi Gholami, D., Baharlouii, M. and Mahmoudi, B., 2017. Mapping area changes of mangroves using RS and GIS (Case study: mangroves of Hormozgan province). Environmental Sciences, 15(2): 75-91 (In Persian with English summary).
- Makowski, C. and Finkl, C.W., 2018. Threats to Mangrove Forests: Hazards, Vulnerability, and Management. Springer, Cham, Switzerland, 724p.
- Mondal, P., Liu, X., Fatoyinbo, T.E. and Lagomasino, D., 2019. Evaluating combinations of Sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa. Remote Sensing, 11(24): 2928.
- Muhsoni, F.F., Sambah, A.B., Mahmudi, M. and Wiadnya, D.G.R., 2018. Comparison of different vegetation indices for assessing mangrove density using sentinel-2 imagery. International Journal of Geomate, 14(45): 42-51.
- Polo, T.C.F. and Miot, HA., 2020. Use of ROC curves in clinical and experimental studies. Jornal Vascular Brasileiro, 19: e20200186.
- Safiari, Sh., 2017. Mangrove forests in Iran. Journal of Iran Nature, 2(2): 49-57 (In Persian with English summary).
- Tabatabaie, T. and Amiri, F., 2019. Multi-temporal assessment of mangrove forests change in the coastal areas of Bushehr region based on Landsat satellite imagery. Iranian Journal of Applied Ecology, 8(3): 45-62 (In Persian with English summary).
- Taghizadeh, A., Danehkar, A., Kamrani, E. and Mahmoudi, B., 2009. Investigation on the structure and dispersion of mangrove forest community in Sirik site in Hormozgan province. Iranian Journal of Forest, 1(1): 25-34 (In Persian with English summary).
- Valderrama-Landeros, L., Flores-de-Santiago, F., Kovacs, J.M. and Flores-Verdugo, F., 2018. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification Scheme. Environmental Monitoring and Assessment, 190: 23.
- Wang, D., Wan, B., Qiu, P., Su, Y., Guo, Q., Wang, R., … and Wu, X., 2018. Evaluating the performance of Sentinel-2, Landsat 8 and Pléiades-1 in mapping mangrove extent and species. Remote Sensing, 10(9): 1468.
- Winarso, G., Purwanto, A.D. and Yuwono, D.M., 2014. New mangrove index as degradation/health indicator using Remote Sensing data : Segara Anakan and Alas Purwo case study. Proceedings of the 12th Biennial Conference of Pan Ocean Remote Sensing Conference. Bali, Indonesia, 4-7 Nov. 2014: 309-316.
- Xia, Q., He, T.T., Qin, C.Z., Xing, X.M. and Xiao, W., 2022. An improved submerged mangrove recognition index-based method for mapping mangrove forests by removing the disturbance of tidal dynamics and S. alterniflora. Remote Sensing, 14(13): 3112.
- Xia, Q., Qin, C.Z., Li, H., Huang, C., Su, F.Z. and Jia, M.M., 2020. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecological Indicators, 113: 106196.
- Yang, G., Huang, K., Sun, W., Meng, X., Mao, D. and Ge, Y., 2022. Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS Journal of Photogrammetry and Remote Sensing, 189: 236-254.