- جوانشیر، ک.، 1355، اتلس گیاهان چوبی ایران. انجمن ملی حفاظت منابع طبیعی و محیط انسانی. 170 صفحه.
- شتایی جویباری، ش.، درویش صفت، ع.ا. و سبحانی، ه.، 1386. مقایسه روشهای طبقهبندی شی- پایه و پیکسل پایه تصاویر ماهوارهای در طبقهبندی تیپهای جنگل. مجله منابع طبیعی ایران، 6(2): 881-869.
- مروی مهاجر، م.ر.، نصرتی، ک.، دیتر کناپ، ه. و بوده، و.، 1384. حفاظت از تنوع زیستی و مدیریت پایدار جنگلهای خزری (شمال ایران). مجموعه مقالات ارائه شده در سمینار کارشناسی، کلارآباد (چالوس): 19- 12 شهریور 1380. 187 صفحه.
-Asner, G.P., 1998. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64: 134-53.
-Azong Cho, M. and Skidmore, A.K., 2006. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101: 181-193.
-Barry, K.M., Stone, C. and Mohammed, C.L., 2008. Crown-scale evaluation of spectral indices for defoliated and discolored eucalypts. International Journal of Remote Sensing, 29: 47-69.
-Blackburn, G.A., 1998. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. International Journal of Remote Sensing, 19(4): 657-675.
-Clevers, J.G.P.W., Heijden, G.W., Van der, A.M., Verzakov, S. and Schaepman, M.E., 2005. Estimating spatial patterns of biomass and nitrogen status in grasslands through imaging spectrometry. In: 9th International Symposium on Physical Measurements and Signatures in Remote Sensing (ISPMSRS), Beijing, 17-19 October 2005. Beijing: ISPRS WG VII/1: 56-59.
-Darvishsefat, A., Abbasi, M. and Mohajer, M.R.M., 2003. Evaluation of the Potential of Landsat ETM for Forest Type Mapping in Northern Iran. INTERNATIONAL ARCHIVES OF PHOTOGRAMMETRY REMOTE SENSING AND SPATIAL INFORMATION SCIENCES, 34(7/B): 956-957.
-Datt, B., 1999. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20(14): 2741-2759.
-Filella, I. and Peñuelas, J., 1994. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing, 15(7):1459-1470.
-Gamon, J.A., Peñuelas, J. and Field, C.B., 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41: 35-44.
-Gitelson, A. and Merzlyak, M.N., 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology, B: Biology, 22: 247-252.
-Gitelson, A.A., Gritz, Y. and Merzlyak, M.N., 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160: 271-282.
-Gausman, H.W. and Allen W.A., 1973. Optical Parameters of Leaves of 30 Plant Species. International journal of plant physiology, 52: 57-62.
-Hüni, A., Nieke, J., Schopfer, J., Kneubühler, M., and Itten, K.I., 2007. Meta data of spectral data collections. Proceedings 5th EARSeL Workshop on Imaging Spectroscopy. Bruges, Belgium, April 23-25. 10 p.
-Jacqumoud, S. and Ustin, S.L., 2000. Leaf optical properties: a state of the art. Proceeding. 8th International Symposium Physical Measurements and Signatures in Remote Sensing, Aussois (France), 8-12 January 2001, CNES: 223-232.
-Kneubuehler, M., Schaepman, M.E. and Kellenberger, T.W., 1998. Comparison of different approaches of selecting endmembers to classify agricultural land by means of hyperspectral data (DAIS7915). International Geoscience and Remote Sensing Symposium (IGARSS), 2: 888-890.
-Latifi, H. and Oladi, D., 2006. Evaluating landsat ETM+ data capability to produce forest cover type maps in the timberline of northern forests of Iran. Taiwan J. For. Sci., 21(3): 363-375.
-Le Maire, G., François, C. and Dufrêne, E., 2004. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89 (1): 1-28.
-Lovelock, C.E. and Robinson, S.A., 2002. Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant, Cell and Environment, 25: 1239–1250.
-Malenovsky, Z., Ufer, C., Lhotakova, Z., Clevers, J.G.P.W., Schaepman, M.E., Cudlin, P. and Albrechtova, J., 2005. A new Optical Index for Chlorophyll Estimation of a Forest Canopy from Hyperspectral Images. In: Zagajewski, B. and Sobczak, M., (Eds.). Imaging Spectroscopy-New Quality in Environmental Studies, EARSeL, Warsaw (Pl), 1: 651-659.
-Schaepman, M.E. and Dangel S., 2000. Solid laboratory calibration of nonimaging spectroradiometer. Applied Optics, 39(21): 3754-3764.
-Sims, D.A. and Gamon, J.A., 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81: 337-354.
-Stimson, H.C., Breshears, D.D., Ustin, S.L. and Kefauver, S.C., 2005. Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sensing of Environment, 96: 108-118.
-Ustin, S.L., Smith, M.O. and Adams J.B., 1993. Remote sensing of ecological processes: A strategy for developing and testing ecological models using spectral mixture analysis. In: Ehrlinger, J.R. and Field, C.B., (Eds.). Scaling Physiological Processes. Leaf to Globe, Academic Press, San Diego: 339–357.
-Ustin, S.L., Asner, G.P., Gamon, J.A., Gitelson, A.A., Huemmrich, K.F., Jacquemoud, S., Schaepman, M.E. and Zarco-Tejada, P.J., 2006. Retrieval of quantitative and qualitative information about plant pigment systems from high resolution spectroscopy. International Geoscience and Remote Sensing Symposium (IGARSS), Article number 4241664: 1996-1999.
-Vogelmann, J.E., Rock, B.N. and Moss, D.M., 1993. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14: 1563–1575.
-Yoder, B.J., and Pettigrew-Crosby, R.E., 1995. Predicting Nitrogen and Chlorophyll Content and Concentrations from Reflectance Spectra (400-9, 500 nm) at Leaf and Canopy Scales. Remote Sensing of Environment, 53: 199-211.