شبیه‌سازی زی‌توده تجاری توده‌های آمیخته راش در جنگل‌های هیرکانی

نوع مقاله : علمی- پژوهشی

نویسنده

دکتری جنگل‌داری، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

تنه تجاری درختان جنگل‌های آمیخته راش علاوه‌بر حداکثر سهم ارزش نقدی و موجودی حجمی، در قالب زی‌توده تجاری به‌عنوان بزرگ‌ترین ذخایر کربن آلی در جنگل‌های شمال محسوب می‌شوند. هدف اصلی پژوهش پیش‌رو دست‌یابی به حداکثر قطعیت و دقت تخمین مقادیر زی‌توده مورد مطالعه بود. پس از قطع و استحصال 174 درخت در جنگل آمیخته راش گلندرود نور، هر بخش از تنه در عرصه وزن شد و قطعات چوبی نیز از هر بخش مذکور با ابعاد ثابت، تکه‌برداری شدند و برای اندازه‌گیری و محاسبه چگالی ویژه در شرایط دمای آون قرار گرفتند. شبیه‌سازی مقادیر زی‌توده مورد مطالعه با استفاده از تکنیک شبکه عصبی مصنوعی انجام شد. برای ارایه دقت روند شبیه‌سازی، الگوسازی آلومتریک با پارامترهای مختلف نیز تبیین شد. از لایه‌های ورودی قطر برابر سینه، ارتفاع تجاری تنه و چگالی ویژه با ترکیب مختلف در الگوسازی آلومتریک و شبیه‌سازی شبکه عصبی استفاده شد. معماری مختلف توپولوژی شبکه الگوریتم پس‌انتشار خطا با تعداد نورون‌های متفاوت شامل توابع انتقالی لجستیک سیگموئیدی و تانژانت سیگموئیدی در لایه‌های پنهان، دقت متفاوتی از برآورد متغیر پاسخ ارایه دادند. قطر به‌عنوان مهم‌ترین عامل تأثیرگذار در شبکه عصبی و معادلات آلومتریک محسوب شد و با افزایش ارتفاع و چگالی ویژه علاوه‌بر قطر، روند قطعیت برآورد افزایش یافت. نتایج نهایی برمبنای کلیه شاخص‌های اعتبارسنجی و ریشه میانگین مربعات خطای بین تخمین و مشاهدات نشان داد که اگرچه دقت برآوردی بین الگوسازی آلومتریک و شبیه‌سازی شبکه عصبی دارای اختلاف جزئی بود، اما خروجی بهینه به‌دست‌آمده از شبیه‌سازی با سه لایه ورودی قطر، ارتفاع و چگالی ویژه، یک لایه پنهان و 20 نورون عصبی حاوی تابع تانژانت سیگموئیدی دارای دقت بیشتری برای پیش‌گویی بود که قابلیت اجرا در سطح وسیعی از جنگل مورد مطالعه را دارد.

 

کلیدواژه‌ها


عنوان مقاله [English]

Simulating commercial biomass in the Hyrcanian mixed-beech stands

نویسنده [English]

  • Ali Asghar Vahedi
Ph.D. Forestry, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO)
چکیده [English]

The commercial bole of trees in the mixed-beech forests contributes the majority of biomass and of carbon pool, and is associated with the majority of monetary values in the Hyrcanian forests of Iran. This research aims to accurately predict commercial biomass compared to the allometric equations and field measurements in the third district of Glandroud forests in Noor. After harvesting of the trees, each part of the bole was weighed in the field and wood pieces were extracted from each part. The pieces were then oven-dried, on which the specific wood density was measured. Biomass was simulated by artificial neural network (ANN) including the FFBP network. Allometric equations (logarithmic multiple linear regressions and transformed power function models) with different parameters were examined to study the simulation uncertainty. Diameter at breast height, commercial height and specific wood density (WD) were inputs to the allometric functions and ANN simulation. Architectures of different topology of studied network including transfer functions of Log-sigmoid and Tan-sigmoid with variety of hidden layers and neuron members returned different error estimations of forest commercial biomass. Diameter was one of the most effective factors to predict biomass using ANN. Moreover, increasing height and WD in the ANN reduced the uncertainty of simulation outputs. Adding height and WD with the different combinations in the allometric models increased the accuracy of response variable prediction. The root mean squared errors (RMSE) showed that although there was slight differences in the estimation accuracies of ANN and allometric models, the optimal ANN outputs were of lower uncertainty to spatially predict the response
 

کلیدواژه‌ها [English]

  • Artificial intelligence
  • Carbon sequestration
  • commercial bole
  • regression analysis
- Abedini, M. and Poladi, J., 2003.  Comparison of artificial  neural  network  by  others  methods  in special  estimation  of  daily  rainfall. Proceedings of the 6th International Conference on Civil Engineering. Isfahan, 5-7 May. 2003: 961- 968 (In Persian).
- Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., Salas, G.D.L., Valle, L.D., Lema, A., Moreno, F., Orrego, S. and Rodriguez, L., 2012. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267: 297-308.
- Anonymous, 2008. Glandrood Forest Management Plan, District 3, Noor, Mazandaran. Second Renewal View, General Office of Natural Resources and Watershed Management of Mazandaran Province, Nowshahr, 174p (In Persian).
- Basuki, T.M., van Laake, P.E., Skidmore, A.K. and Hussin, Y.A., 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257: 1684-1694.
- Bayati, H. and Najafi, A., 2013. Performance comparison artificial neural networks with regression analysis in trees trunk volume estimation. Journal of Forest and Wood Products, 66(2): 177-191 (In Persian).
- Bihamta, M.R. and Chahouki, M.A., 2011. Principle of Statistic for the Natural Resources Science. University of Tehran Press, Tehran, 300p (In Persian).
- Burnham, K.P. and Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer, New York, 488p.
- Chave, J., Andalo, V., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson, B.W., Ogawa, H., Puig, H., Riera, B. and Yamakura, T., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145: 87-99.
- Djomo, A.N., Adamou, I., Joachim, S. and Gode, G., 2010. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management, 260: 1873-1885.
- Ekoungoulou, R., Liu, X., Joël Loumeto, J., Averti Ifo, S., Enock Bocko, Y., Koula, F.E. and Niu, S., 2014. Tree allometry in tropical forest of Congo for carbon stocks estimation in above-ground biomass. Open Journal of Forestry, 4: 481-491.
- Foody, G.M., Boyd, D.S. and Cutler, M.E.J., 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85: 463-474.
- Hagan, M.T., Dcmuth, H.B. and Beale, M., 1996. Neural Network Design. PWS Publishing Company, USA, 217p.
- Haykin, S., 1998. Neural Networks: A Comprehensive Foundation. Prentice Hall Press, USA.
- Henry, M., Besnard, A., Asante, W.A., Eshun, J., AduBredu, S., Valentini, R., Bernoux, M. and SaintAndré, L., 2010. Wood density, phytomass variations within and among trees and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260: 1375-1388.
- Ketterings, Q.M., Coe, R., Noordwijk, M.V., Ambagau, Y. and Palm, C.A., 2001. Reducing uncertainty in the use of allometric biomass equations for predicting abone-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146: 199-209.
- Mirabdollahi, M., Bonyad, A.E., Torkaman, J. and Bakhshandeh, B., 2011. Study on tree form of Oriental Beech (Fagus orientalis Lipsky) in different growth stages (Case study: Lomir forest). Iranian Journal of Forest, 3: 177-187 (In Persian).
- Naghdi, R. and Ghajar, I., 2012. Application of artificial neural network in the modeling of skidding time prediction. Advanced Materials Research, 403: 3538-3543.
- Navar, J., 2009. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257: 427-434.
- Pilever Shahri, A.R., Ayoubi, S.H. and Khademi, H., 2011. Comparison of artificial neural network (ANN) and multivariate linear regression (MLR) models  to predict soil organic carbon using digital terrain analysis, (Case study: Zargham Abad Semirom, Isfahan Province). Journal of Water and Soil, 6: 1151-1163 (In Persian).
- Ribeiro, S.C., Fehrmann, L., Pedro Boechat Soares, C., Antônio Gonçalves Jacovine, L., Kleinn, C. and de Oliveira Gaspar, R., 2011. Above- and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management, 262: 491-499.
- Tiryaki, S. and Aydin, A., 2014. An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 62: 102-108.
- Toth, T., Schaap, M.G. and Molnar, Z., 2008. Utilization of soil-plant interrelations through the use of multiple regression and artificial neural network in order to predict soil properties in Hungrian Solonetzic grasslands. Cereal Research Communications, 36(5): 1447-1450.
- Vahedi, A. and Mataji, A., 2014. Amount of carbon sequestration distribution associated with oak tree’s (Quercus castaneifolia C. A. May) bole in relation to physiographical units of Hyrcanian natural forests of Iran. Iranian Journal of Forest and Poplar Research, 4: 716-728 (In Persian).
- Vahedi, A.A., Mataji, A. and Faraji, F., 2014. Modelling radial and vertical variations of bole wood density of beech (Fagus orientalis Lipsky) in the Caspian forests using artificial neural network technique. Iranian Journal of Forest, 4: 483-49 (In Persian).
- Zhu, B., Wang, X., Fang, W., Piao, S., Shen, H., Zhao, S. and Peng, C., 2010. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research, 123: 439-452.
- Zianis, D. and Mencuccini, M., 2004. On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187: 311-332.