- Ali, A.M., Darvishzadeh, R., Skidmore, A., Gara, T.W. and Heurich, M., 2021. Machine learning methods’ performance in radiative transfer model inversion to retrieve plant traits from Sentinel-2 data of a mixed mountain forest. International Journal of Digital Earth, 14(1): 106-120.
- Bhattarai, R., Rahimzadeh-Bajgiran, P., Weiskittel, A., Homayouni, S., Gara, T.W. and Hanavan, R.P., 2022. Estimating species-specific leaf area index and basal area using optical and SAR remote sensing data in Acadian mixed spruce-fir forests, USA. International Journal of Applied Earth Observation and Geoinformation, 108: 102727.
- Campos-Taberner, M., García-Haro, F.J., Busetto, L., Ranghetti, L., Martínez, B., Gilabert, M.A., ... and Boschetti, M., 2018. A critical comparison of remote sensing Leaf Area Index estimates over rice-cultivated areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT polar system. Remote Sensing, 10(5): 763.
- Chen, Z., Jia, K., Xiao, C., Wei, D., Zhao, X., Lan, J., ... and Wang, L., 2020. Leaf area index estimation algorithm for GF-5 hyperspectral data based on different feature selection and machine learning methods. Remote Sensing, 12(13): 2110.
- Chianucci, F. and Macek, M., 2023. hemispheR: an R package for fisheye canopy image analysis. Agricultural and Forest Meteorology, 336: 109470.
- Chrysafis, I., Korakis, G., Kyriazopoulos, A.P. and Mallinis, G., 2020. Retrieval of leaf area index using Sentinel-2 imagery in a mixed Mediterranean forest area. ISPRS International Journal of Geo-Information, 9(11): 622.
- Cui, S. and Zhou, K., 2017. A comparison of the predictive potential of various vegetation indices for leaf chlorophyll content. Earth Science Informatics, 10(2): 169-181.
- Darvishzadeh, R., Skidmore, A., Abdullah, H., Cherenet, E., Ali, A., Wang, T., ... and Paganini, M., 2019. Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model. International Journal of Applied Earth Observation and Geoinformation, 79: 58-70.
- Dube, T., Pandit, S., Shoko, C., Ramoelo, A., Mazvimavi, D. and Dalu, T., 2019. Numerical assessments of leaf area index in tropical savanna rangelands, South Africa using Landsat 8 OLI derived metrics and in-situ measurements. Remote Sensing, 11(7): 829.
- Erfanifard, Y. and Lotfi Nasirabad, M., 2022. Comparison of vegetation and mangrove indices in mangrove mapping on Sentinel-2 imagery based on Google Earth Engine. Iranian Journal of Forest and Poplar Research, 30(3): 224-240 (In Persian with English summary).
- Estévez, J., Salinero-Delgado, M., Berger, K., Pipia, L., Rivera-Caicedo, J.P., Wocher, M., ... and Verrelst, J., 2022. Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Remote Sensing of Environment, 273: 112958.
- Fallah, A., Nazariani, N., Imani Rastabi, M., Bakhshi, F., 2022. Modeling the commercial volume of pure and mixed stands of beech trees using non-parametric algorithms in the educational-research Forest of Darabkola, Sari, Iran. Iranian Journal of Forest and Poplar Research, 30(2): 180-192 (In Persian with English summary).
- Gewali, U.B., Monteiro, S.T. and Saber, E., 2019. Gaussian processes for vegetation parameter estimation from hyperspectral data with limited ground truth. Remote Sensing, 11(13): 1614.
- Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M. and Baret, F., 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1-2): 19-35.
- Kovacs, J.M., Flores-Verdugo, F., Wang, J. and Aspden, L.P., 2004. Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquatic Botany, 80(1): 13-22.
- Mao, H., Meng, J., Ji, F., Zhang, Q. and Fang, H., 2019. Comparison of machine learning regression algorithms for cotton leaf area index retrieval using Sentinel-2 spectral bands. Applied Sciences, 9(7): 1459.
- Meyer, L.H., Heurich, M., Beudert, B., Premier, J. and Pflugmacher, D., 2019. Comparison of Landsat-8 and Sentinel-2 data for estimation of leaf area index in temperate forests. Remote Sensing, 11(10): 1160.
- Miri, N., Darvishsefet, A.A., Zargham, N. and Shakeri, Z., 2017. Estimation of leaf area index in Zagros forests using Landsat 8 data. Iranian Journal of Forest, 9(1): 29-42 (In Persian with English summary).
- Moradi, G., Pir Bavaghar, M., Shakeri, Z. and Fatehi, P., 2021. Leaf area index estimation in the northern Zagros forests using remote sensing (Case study: a part of Baneh forests). Journal of Forest Research and Development, 6(4): 679-693 (In Persian with English summary).
- Omer, G., Mutanga, O., Abdel-Rahman, E.M. and Adam, E., 2016. Empirical prediction of leaf area index (LAI) of endangered tree species in intact and fragmented indigenous forests ecosystems using WorldView-2 data and two robust machine learning algorithms. Remote Sensing, 8(4): 324.
- Pope, G. and Treitz, P., 2013. Leaf area index (LAI) estimation in boreal mixedwood forest of Ontario, Canada using light detection and ranging (LiDAR) and WorldView-2 imagery. Remote Sensing, 5(10): 5040-5063.
- Sinha, S.K., Padalia, H., Dasgupta, A., Verrelst, J. and Rivera, J.P., 2020. Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India. International Journal of Applied Earth Observation and Geoinformation, 86: 102027.
- Verrelst, J., Alonso, L., Caicedo, J.P.R., Moreno, J. and Camps-Valls, G., 2013. Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2): 867-874.
- Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.P., Lewis, P., ... and Moreno, J., 2019. Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods. Surveys in Geophysics, 40: 589-629.
- Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G.P.W., Camps-Valls, G. and Moreno, J., 2015. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods – A comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 108: 260-272.
- Weiss, M., Baret, F., Smith, G.J., Jonckheere, I. and Coppin, P., 2004. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1-2): 37-53.
- Wocher, M., Berger, K., Verrelst, J. and Hank, T., 2022. Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas. ISPRS Journal of Photogrammetry and Remote Sensing, 193: 104-114.
- Xie, R., Darvishzadeh, R., Skidmore, A.K., Heurich, M., Holzwarth, S., Gara, T.W. and Reusen, I., 2021. Mapping leaf area index in a mixed temperate forest using Fenix airborne hyperspectral data and Gaussian processes regression. International Journal of Applied Earth Observation and Geoinformation, 95: 102242.
- Xu, J., Quackenbush, L.J., Volk, T.A. and Im, J., 2020. Forest and crop leaf area index estimation using remote sensing: Research trends and future directions. Remote Sensing, 12(18): 2934.
- Zhang, F., Tian, X., Zhang, H. and Jiang, M., 2022. Estimation of aboveground carbon density of forests using deep learning and multisource remote sensing. Remote Sensing, 14(13): 3022.
- Zou, J., Hou, W., Chen, L., Wang, Q., Zhong, P., Zuo, Y., ... and Leng, P., 2020. Evaluating the impact of sampling schemes on leaf area index measurements from digital hemispherical photography in Larix principis-rupprechtii forest plots. Forest Ecosystems, 7(1): 52.
- Zou, X., Zhu, S. and Mõttus, M., 2022. Estimation of canopy structure of field crops using sentinel-2 bands with vegetation indices and machine learning algorithms. Remote Sensing, 14(12): 2849.