From tree to museum: Exploring the hidden value of Xylotheque in the natural sciences

Document Type : Review article

Authors

1 Expert, Botany Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

2 Corresponding author, Expert, Forest Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

3 Assistant Prof.,Wood Science and Forest Products Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

10.22092/ijfpr.2023.361625.2092

Abstract

      Wood is a valuable material that is produced and treated in the forest workshop using natural resources. The history of these workshops reveals the significance of wood in human life across many regions of the world. As collecting wooden specimens became increasingly popular over time, museums and herbariums emerged to house valuable plant and animal collections. One unique type of collection is the xylarium, or wooden herbarium, where wood samples are stored. The term "xylothek" was originally used when these collections were made available to the public. Xylaria distinguish between collections created for scientific and educational purposes and informal ones made by craftsmen and artisans. The creation of these collections was primarily intended to facilitate collaboration and exchange among the world's greatest xylaria. They also allow for systematic studies by wood anatomists, researchers, and scientists in other fields. Additionally, they serve exhibition, educational, cultural, historical, and commercial purposes. In recent years, modern technologies such as imaging, image analysis, measurement, and artificial intelligence have made it possible for artisans to identify wood with greater precision. These collections have immense value because they increase awareness of biological reserves and attract the attention of experts who record and collect information about them. Wood blocks may seem silent, but they have tremendous potential to enhance our understanding of the natural world and contribute to its preservation.

Keywords


- Abe, H., Watanabe, U., Yoshida, K., Kuroda, K. and Zhang, C., 2011. Changes in organelle and DNA quality, quantity, and distribution in the wood of Cryptomeria japonica over long-term storage. IAWA Journal, 32: 263–272.
- Amalia, H., Aliamat, A. and Yunita, Y., 2022. Aplikasi mobile sistem informasi pengolahan Kayu Xylarium Bogoriense. Jurnal Teknik Komputer AMIK BSI, 8(1): 22-27.
- Anderegg, W.R.L. and Meinzer, F.C., 2015. Wood Anatomy and Plant Hydraulics in a Changing Climate. In: Hacke, U. (eds) Functional and Ecological Xylem Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-15783-2_9.
- Andrade, B., Basso, V. M. and Figueiredo Latorraca, J. V., 2020. Machine vision for field- level wood identification. IAWA Journal, 41(4):1-18.
- Baas, P., 1981. On some wood collections of historical interest. IAWA Bulletin (N.S.), 2(1):45–47.
- Baas, P., 1982. Systematic, phylogenetic, and ecological wood anatomy: History and perspectives. In: Baas, P. (eds) New Perspectives in Wood Anatomy. Forestry Sciences, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2418-0_2.
- Barker, J., 2008. Disconnection and reconnection: vouchers in wood science. IAWA Journal, 29(4): 425–437.
- Beech, E., Rivers, M., Oldfield, S. and Smith, P. P., 2017 GlobalTreeSearch: The first complete global database of tree species and country distributions. Journal of Sustainable Forestry, (36)5: 454-489.
- Beeckmann, H., 2016. Wood anatomy and trait-based ecology. IAWA Journal, 37(2): 127-151.
- Bellermann, J. B., 1788. Abbildungen zum Cabinet der vorzüglichsten in- und ausländischen Holzarten. F. Bellermann, Erfurt (In German).
- Bernal, R., Coradin, V., Camargos J., Costa, C. and Pissarra, J., 2011. Wood anatomy of Lecythidaceae species called "Tauari". IAWA Journal, 32(1), 97-112. 
- Bossu, J., Beauchêne, J., Estevez, Y., Duplais, C. and Clair, B., 2016. New Insights on Wood Dimensional Stability Influenced by Secondary Metabolites: The Case of a Fast-Growing Tropical Species Bagassa guianensis Aubl. PLoS ONE 11(3): e0150777.
- Bowett, A., 2012. Woods in British Furniture-making 1400-1900: An Illustrated Historical Dictionary. Oblong Creative, Wetherby & Royal Botanic Gardens, Kew, 360p. 620 ill.
- Cornish, C., Gasson, P. and Nesbitt, M., 2014. The wood collection (xylarium) of the Royal Botanic Gardens, Kew. IAWA Journal, 35(1): 85-104.
- Correa, A. V., 2017. Xilotecas, importantes colecciones de referencia, Colombia Forestal, 20(2): 192-200.
- De Micco, V., Carrer, M., Rathgeber, C BK, Camarero, J J., Voltas, J., Cherubin, P. and Battipaglia, G., 2019. From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA Journal, (40)2: 155-182. 
- Deklerck, V., Mortier, T., Goeders, N., Cody, R.B., Waegeman, W., Espinoza, E., Van Acker, J., Van den, Bulcke, J. and Beeckman, H., 2019. A protocol for automated timber species identification using metabolome profiling. Wood Science Technology, 53(4): 953-65.
- Desmond, R., 2007. The history of the Royal Botanic Gardens, Kew. Royal Botanic Gardens, Kew. Harvill Press, 486p.
- Figueroa-Mata, G., Mata-Montero-Mata, E., Valverde-Otarola, J. C. and Arias-Aguilar, D., 2018. Automated image- based identification of forest species: challenges and opportunities for 21th century xylotheques. IEEE International Work Conference on Bioinspired Intelligence (IWOBI). San Carlos, Costa Rica.
- Garrett, J., 1999. Redefining order in German library, 1775- 1825. Eighteenth-Century Studies, 33(1): 103-123.
- Gasson, P., 2011. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA Journal, 32(2): 137-154.
- Guzman, M., 2011. Inauguran xiloteca v´ıctor rojas. Technological Institute of Costa Rica. 10, p. 3 (In Spanish).
- Hafemann, L.G., Oliveira, L.S. and Cavalin, P., 2014. Forest species recognition using deep convolutional neural networks. 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, pp1103-1107.
- Hoadley, B., 1990. Identifying wood: Accurate results with simple tools. Connecticut: The Taunton Press Inc. 223p.
- Holder, C. D., 2001. A Guide to Useful Woods of the World. Second edition. Forest Products Society, 618p.
- Hwang, S. W. and Sugiyama, J., 2021. Computer vision-based wood identification and its expansion and contribution potentials in wood science: A review. Plant Methods, 17(44): 1-21.
- Ilic, J., 1993. Computer aided wood identification using CSIROID. IAWA Journal, 14(4):333-340.
- Jiao, L., Yin, Y., Cheng, Y. and Jiang, X., 2014. DNA barcoding for identification of the endangered species Aquilaria sinensis: comparison of data from heated or aged wood samples. Holzforschung, 68(4); 487-494.
- Kagawa, A. and Leavitt, S.W., 2010. Stable carbon isotopes of tree rings as a tool to pinpoint the geographic origin of timber. Journal Wood Science, 56(3):175-83.
- Koch, G., Haag, V., Heinz, I., Richter, H.G. and Schmitt, U., 2015. Control of internationally traded timber-the role of macroscopic and microscopic wood identifi‑cation against illegal logging. Journal Forensic Research, 6(6): 1-4.
- Kress, W. J., GarcíaRobledo, C., Uriarte, M. and Erickson, D. L., 2015. DNA barcodes for ecology, evolution, and conservation. Trends in Ecology and Evolution, 30(1): 25-35.
- Lamb, H. and Curtis, A., 2005. A Guide for Developing a Wood Collection. Forest Products Society for the International Wood Collectors Society, 42p.
- Langbour, P., Paradis, S. and Thibaut, B., 2018. Description of the Cirad wood collection in Montpellier, France, representing eight thousand identified species. Bois et Forêts des Tropiques, 339(339): 7-16.
- Le Bras, G., Pignal, M., Jeanson, M. L., Muller, S., Aupic, C. and Carré B., 2017. The French Muséum national d’histoire naturelle vascular plant herbarium collection dataset. Scientific Data, 4: 170016.
- Lens, F., Liang, Ch., Guo, Y., Tang, Xi, Jahanbanifard, M., Silva, F., Ceccantini, G. and Verbeek, F., 2020. Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal. 41(4): 660-680.
- León, H., 2009. 50 años de la xiloteca MERw, patrimonio científico de Venezuela (1959-2009). Pittieria, 33: 111-120. (In Spanish)
- Lowe, A. J. and Cross, H. B., 2011. The application of DNA methods to timber tracking and origin verification. IAWA Journal, 32(2): 251-262.
- Lynch, A.H. and Gasson, P.E., 2010. Index Xylariorum- Edition 4. Royal Botanic Gardens, Kew. http://assets.kew.org/files/Index%20Xylariorum%204.pdf?
- MacLeod, N., 2007. Automated Taxon Identification in Systematics: Theory, Approaches and Applications. Systematics Association Special Volumes. Taylor & Francis, Boca Raton, 368p.
- Maniatis, D., Saint André, L., Temmerman, M., Malhi, Y. and Beeckman, H., 2011. The potential of using xylarium wood samples for wood density calculations: a comparison of approaches for volume measurement. iForest- Biogeosciences and Forestry, 4(4): 150-159.
- Mata-Montero, E., Valverde, J., Arias-Aguilar, D. and Figueroa-Mata, G., 2018. A methodological proposal for collecting and creating macroscopic photograph collections of tropical woods with potential for use in deep learning. Biodiversity Information Science and Standards 2: e25260.
- Miller, R. B., 1999. Xylaria at the Forest Products Laboratory: past, present, and future. Wood to survive. Tervuren, Belgique: Musee royal de l Afrique centrale, 1999. Annales. Sciences economiques, vol. 25: 243- 254.
- Miller, R.B., Pearson, R.G. and Wheeler, E.A., 1987 Creation of a large database with IAWA standard list characters. IAWA Journal, 8(3): 219-232.
- Mojib, Zh., 2010. Identifier of Iranian Museums. Museum of Science and Technology of the Islamic Republic of Iran. 704p (In Persian).
- Nagata, T., 2011. Presents from the 11th year of Meiji. Newsletter of the Friend’s Society of the Koishikawa Botanical Garden 41:3-8 (In Japanese with English summary). Oblong Creative, Wetherby & Royal Botanic Gardens, Kew.
- Nagata, T., Duval, A., Lack, H. W., Loudon, G., Nesbitt, M., Schmull, M. and Crane, P. R., 2013. An unusual Xylotheque with plant illustrations from early Meiji Japan. Economic botany, 67(2): 87-97.
- Normand, D., Mariaux A., Détienne P. and Langbour P., 2017. CIRAD’s wood collection. CIRAD. https://ur-biowooeb.cirad.fr/en/expertises-products/technical-expertise-on-wood/xylotheque
- Pan, S., and Kudo, M., 2011. Segmentation of pores in wood microscopic images based on mathematical morphology with a variable structuring element. Computers and Electronics in Agriculture, 75(2):250-260.
- Pankhurst, R.J., 1978. Biological identification: the principles and practice of identification methods in biology. Baltimore: University Park Press, Cambridge, 104p.
- Pearson, R.G. and Wheeler, E.A., 1981. Computer identification of hardwood species. IAWA Journal, 2(1): 37-40.
- Pearson, R.G. and Wheeler, E.A., 1987. A microcomputer based system for computer-aided wood identification. IAWA Journal, 8(4):347-354.
- Richter, H.G., Grosser, D., Heinz, I. and Gasson, P., 2004. IAWA Committee. IAWA, list of microscopic features for softwood identification. IAWA Journal, 25(1): 1-70.
- Sagheb-Talebi, Kh., Sajedi, T. and Yazdian, F., 2004. Forests of Iran. Research Institute of Forests and Rangelands, 55p (In Persian and English).
- Stern, W. L., 1973. The wood collection: what should be its future? Arnoldia, 33(1): 67-80.
- Stern, W. L., 1978. Index Xylariorum. Institutional Wood Collections of the World. 2. Wiley, 27(2/3) 233-269.        
- Stern, W. L., 1988. Index Xylariorum. Institutional wood collections of the world. 3. IAWA Bulletin, 9 (2):203-252.
- Sun, L. and Bogdanski, B. E. C., 2017. Trade incentives for importers to adopt policies to address illegally logged timber: The case of non-tropical hardwood plywood. Journal of Forest Economics, 27(1): 18-27.
- Tang, X. J., Tay, Y. H., Abdullah Siam, N. and Lim, S. Ch., 2018. My wood-ID: Automated macroscopic wood identification system using smartphone and macro-lens. CIIS 2018: Proceedings of the 2018 International Conference on Computational Intelligence and Intelligent Systems. 37-43p. https://doi.org/10.1145/3293475.3293493
- Tittensor, D. P., Walpole, M., Hill, S. L., Boyce, D. G., Britten, G. L., Burgess, N. D. and Ye, Y., 2014. A mid-term analysis of progress toward international biodiversity targets. Science, 346(6206): 241-244.
- Toghraei, N., 2013. Knowledge of Wood, First Volume: Today's Woods. Jahad Publishing Organization, 268p (In Persian with English summary).
- UNODC Committee. 2016. Best practice guide on forensic timber identification. United Nations Office for Drugs and Crime, Vienna. https://www.unodc.org/documents/Wildlife/Guide_Timber.pdf
- Walter Lack, H., 1999. Plant illustration on wood blocks, a magnicifant Japanese xylotheque of the early Meiji period. Curtis's Botanical Magazine, 16(2): 124-134.
- Ward, J., Harris, J., Cerling, T., Wiedenhoeft, A., Lott, M., Dearing, M-D., Coltrain, J. and Ehleringer, J., 2005. Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California. Proceedings of the National Academy of Science of the United States of America, 102(3): 690-694.
- Wheeler, E.A. 2011. Inside wood-a web resource for hardwood anatomy. IAWA Journal, 32(2): 199-211.
- Wheeler, E.A. and Baas, P. 1998. Wood identification-a review. IAWA Journal, 19(3): 241-264.
- Wheeler, E.A., Baas, P.and Gasson, P.E., 1989. IAWA list of microscopic features for hardwood identification. IAWA Journal, 10(3): 219-332.
- Wiedenhoeft, A. 2014. Curating Xylaria, En: J. Salick, K. Konchar & Ma. Nesbitt (eds.). Chapter 9. Curating biocultural collections: A handbook (127-134pp). Richmond: Royal Botanic Gardens, Kew.
- Wiedenhoeft, A. 2016. Curating xylaria, Curating Biocultural Collections (handbook). Kew Publishing in association with Missouri Botanical Garden, 2016
- Wiedenhoeft, A. C. and Baas, P., 2011. Wood science for promoting legal timber harvest. IAWA Journal 32(2): 123-296.
- Yuliastuti, E., Suprijanto, dr. and Retno Sasi, S., 2013. Compact computer vision system for tropical wood species recognition based on pores and concentric curve. 3rd International Conference on Instrumentation Control and Automation (ICA). Bali. Indonesia, DOI: 10.1109/ICA.2013.6734071.   
- Yusof, R., Khalid, M. M. and Khairuddin, A.S., 2013. Application of kernel-genetic algorithm as nonlinear feature selection in tropical wood species recognition system. Computers and Electronics in Agriculture, 93(1): 68-77.
- Zhao, S., Pederson, N., d’Orangeville L., HilleRisLambers, J., Boose, E., Penone, C., Bauer, B., Jiang, Y. and Manzanedo, R.D., 2019. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. Journal of Biogeography, 46(2): 355-368.