Capatility of Alos-Palsar-2 radar quad polarization data for estimation of structural quantitative characteristics of planted forest, Arabdagh region, Iran

Document Type : Research article

Authors

1 M.Sc. Graduated Student of Forestry, Department of Forestry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Prof., Department of Forestry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assistant Prof., Department of Forestry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Estimating forest attributes is essential for understanding the condition and function of the forest to be applied in forest planning and management. The purpose of this study was to estimate the structural attributes of conifer-dominated plantations using radio detection and ranging (RADAR) polarimetric data and nonparametric algorithms in the Arabdagh region of Golestan province. Field-based structural attributes were collected from 319 circular plots with 400 m2 areas designed within a random cluster method. Within each plot, diameter at breast height (for all trees) and height (for some trees) were measured. The precise position of plots ere also recorded. Then stand volume, basal area, and the number of stem per ha were calculated. The required preprocessing and processing were conducted on raw RADAR data, followed by the extraction of plot-based values from the derived indices. Model training was done on 75% of plots using random forest, support vector machine, and K nearest neighbor algorithms. Results were validated with the remaining 25% of the plots. The results showed the lowest Root Mean Square Error and Bias for Random Forest algorithm for basal area 50.62% and -1.7%, respectively. Moreover, the support vector machine model achieved 58.82% and -7.94% for volume as well as 52.07% and -5.1% for no. of trees per hectare. As a whole, this study showed that the full polarization PALSAR-2 data has a moderate ability to estimate the quantitative structural attributes due to the high amplitude of changes in the quantitative forest characteristics.

Keywords


- Antropov, O., Rauste, Y., Ahola, H., & Hame, T. 2013. Stand-level stem volume of boreal forests from spaceborne SAR imagery at L-band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1): 35-44.
- Askne, J., Fransson, J., Santoro, M., Soja, M., and Ulander, L., 2013. Model-based biomass estimation of a hemi-boreal forest from multitemporal TanDEM-X acquisitions. Remote Sensing, 5(11): 5574-5597.
-Astola, H., Häme, T., Sirro, L., Molinier, M., and Kilpi, J., 2019. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223: 257-273.
 - Ataee, M. S., Maghsoudi, Y., Latifi, H., and Fadaie, F., 2019. Improving Estimation Accuracy of Growing Stock by Multi-Frequency SAR and Multi-Spectral Data over Iran’s Heterogeneously-Structured Broadleaf Hyrcanian Forests. Forests, 10(8): 641.
- Chowdhury, T. A., Thiel, C., and Schmullius, C., 2014. Growing stock volume estimation from L-band ALOS PALSAR polarimetric coherence in Siberian forest. Remote Sensing of Environment, 155: 129-144.
- Golshani, P., Maghsoudi, Y., and Sohrabi, H., 2019. Relating ALOS-2 PALSAR-2 Parameters to Biomass and Structure of Temperate Broadleaf Hyrcanian Forests. Journal of the Indian Society of Remote Sensing, 47(5): 749-761.
- Gonzalez, P., Asner, G. P., Battles, J. J., Lefsky, M. A., Waring, K. M., and Palace, M., 2010. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sensing of Environment, 114(7): 1561-1575.
- Holopainen, M., Haapanen, R., Karjalainen, M., Vastaranta, M., Hyyppä, J., Yu, X., ... and Hyyppä, H., 2010. Comparing accuracy of airborne laser scanning and TerraSAR-X radar images in the estimation of plot-level forest variables. Remote Sensing, 2(2): 432-445.
- JAXA, 2014. ALOS-2/Calibration Result of JAXA Standard Products. Japan Aerospace Exploration Agency, Earth Observation Research Center. http://www.eorc.jaxa.jp/ALOS-2/en/calval/calval_index.htm
- Lee, J. S., and Pottier, E., 2009. Polarimetric radar imaging: from basics to applications. CRC press. Taylor & Francis Group. 422 p.
- Long, J., Lin, H., Wang, G., Sun, H., and Yan, E., 2019. Mapping growing stem volume of chinese fir plantation using a saturation-based multivariate method and Quad-polarimetric SAR images. Remote Sensing, 11(16): 1872.
- Meng, Q., Cieszewski, C. J., Madden, M., and Borders, B. E., 2007. K nearest neighbor method for forest inventory using remote sensing data. GIScience and Remote Sensing, 44(2): 149-165
- Morin, D., Planells, M., Guyon, D., Villard, L., Mermoz, S., Bouvet, A., and Dedieu, G., 2019. Estimation and Mapping of Forest Structure Parameters from Open Access Satellite Images: Development of a generic method with a study case on coniferous plantation. Remote Sensing, 11(11): 1275.
- Mutanga, O., Adam, E., and Cho, M. A., 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18: 399-406.
- Nguyen, L. V., Tateishi, R., Nguyen, H. T., Sharma, R. C., To, T. T., and Le, S. M., 2016. Estimation of tropical forest structural characteristics using ALOS-2 SAR data. Advance in Remote Sensing, 5: 131-144.
- Reuveni, Y., Dahan, E., Anker, Y., and Sprintsin, M., 2018. Estimating forest parameters using Landsat ETM+ spectral responses and monocultured plantation fieldwork measurements data. International Journal of Remote Sensing, 39(8): 2620-2636.
- Santos, J. R., Lacruz, M. P., Araujo, L. S., and Keil, M., 2002. Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data. International Journal of Remote Sensing, 23(7): 1217-1229.
- Shataee, S., Kalbi, S., Fallah, A., and Pelz, D., 2012. Forest attribute imputation using machine-learning methods and ASTER data: Comparison of k-NN, SVR and random forest regression algorithms. International Journal of Remote Sensing, 33(19): 6254-6280.
- Solberg, S., Astrup, R., Breidenbach, J., Nilsen, B., and Weydahl, D., 2013. Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote Sensing of Environment, 139: 60-67.
- Vastaranta, M., Niemi, M., Karjalainen, M., Peuhkurinen, J., Kankare, V., Hyyppä, J., and Holopainen, M., 2014. Prediction of forest stand attributes using TerraSAR-X stereo imagery. Remote Sensing, 6(4): 3227-3246.
- Yazdani, M., Shataee, S., Mohammadi, J., Maghsoudi, M., 2018. Comparative study of the possibility estimation of some structural quantitative attributes of Caspian forests using Radar and integrating Radar and Lidar data. RS and GIS for Natural Resources, 8(4): 109-126 (In Persian).
- Yu, X., Hyyppä, J., Karjalainen, M., Nurminen, K., Karila, K., Vastaranta, M., and Kukko, A., 2015. Comparison of laser and stereo optical, SAR and InSAR point clouds from air-and space-borne sources in the retrieval of forest inventory attributes. Remote Sensing, 7(12): 15933-15954.
- Zhao, L., Chen, E., Li, Z., Zhang, W., and Gu, X., 2017. Three-step semi-empirical radiometric terrain correction approach for PolSAR data applied to forested areas. Remote Sensing, 9(3): 269.