Application of bivariate Ripley's K- function for studying competition and spatial association of trees (Case study: intact Oriental beech stands in Kelardasht)

Document Type : Research article

Authors

1 Assistant Prof., Research Institute of Forests and Rangelands

2 Associate Prof., Research Institute of Forests and Rangelands

Abstract

Competition is a fundamental ecological process driving succession in a forest and affects on forest stand structure. Understanding competition among tree species is especially important when management goal is to mimic the dynamics of natural ecosystems. Three 1-ha stem-mapped plots were established at three developmental stages of initial, optimal and decay in an intact natural, unmanaged and uneven-aged beech (Fagus orientalis Lipsky) forest in the Kelardasht region, in the north of Iran. Diameter of all trees with dbh greater than 7.5 cm were recorded. All of the measured trees were assigned into four diameter size classes as small, medium, large, and extra large timbers. Spatial associations among tree size classes were analyzed using bivariate Ripley’s K-function. Results showed that association patterns (i.e., attraction and repulsion) varied among different size classes across different development stages, likely influenced by shade-tolerance characteristics, seed dispersal limitation and intra-specific competition of beech trees. This study highlighted the application of bivariate Ripley’s K-function and the importance of competition in understanding stand dynamics of beech forests across development stages. The information derived from these untouched stands could be useful as a key reference for developing management programs, silvicultural interventions, plantations and reforestation programs as well as giving us insight into competitive processes to enable better modeling of beech stands dynamics.
 

Keywords


- اخوان، ر.، ثاقب طالبی، خ.، حسنی، م. و پرهیزکار، پ.، 1389. بررسی الگوی مکانی درختان طی مراحل تحولی جنگل در توده‌های دست‌نخورده راش (Fagus orientalis Lipsky) در کلاردشت. تحقیقات جنگل و صنوبر ایران، 18 (2): 336-322.
- اسلامی، ع.ر. و ثاقب طالبی، خ.، 1386. بررسی ساختار طبیعی راشستانهای خالص و آمیخته در جنگلهای شمال کشور. پژوهش و سازندگی، 20 (4): 48-39.
- بی‌نام، 1377. طرح جنگل‌داری سری یک لنگا، حوضه آبخیز شماره 36 (کاظم‌رود). اداره کل منابع طبیعی نوشهر.  450 صفحه.
- ثاقب طالبی، خ.، اسلامی، ع.ر.، قورچی‌بیگی، ک.، شهنوازی، ه. و موسوی میرکلایی، س.ر.، 1380. ساختار راشستانهای خزری و کاربرد شیوه تک‌گزینی در آنها. مجموعه مقالات دومین اجلاس بین‌المللی جنگل و صنعت. جلد اول: 138-107.
- حبشی، ه، حسینی، س.م.، محمدی،‌ ج. و رحمانی، ر.، ‌1386. تعیین الگوی پراکنش و ساختار در جنگل آمیخته راش شصت‌کلا گرگان. تحقیقات جنگل و صنوبر ایران، ‌15 (1): 64-55.
- دلفان اباذری، ‌ب.، ثاقب طالبی، خ. و نمیرانیان، م.، 1383. بررسی مراحل تحولی راشستانهای طبیعی در قطعه شاهد منطقه کلاردشت (لنگا). تحقیقات جنگل و صنوبر ایران، 12 (3): 325-307.
- فلاح، ا.، 1379. بررسی ساختار توده‌های طبیعی راش در استانهای مازندران و گلستان. رساله دکتری، دانشکده منابع طبیعی، دانشگاه تهران، 202 صفحه.
- متاجی، ا. و ثاقب طالبی، خ.، 1386. بررسی مراحل تحولی و پویایی دو جامعه گیاهی راش شرقی در جنگلهای طبیعی منطقه خیرودکنار نوشهر. تحقیقات جنگل و صنوبر ایران، 15 (4): 416-398.
- Attiwill, P.M., 1994. The disturbance of forest ecosystems: the ecological basis for conservation management. Forest ecology and management,   63: 247-300.
- Baddeley, A. and Turner, R., 2005. Spatstat: An R package for analyzing spatial point patterns. J. Stat. Software, 12: 1- 42.
- Bäuerle, H. and Nothdurft, A., 2011. Spatial modeling of habitat trees based on line transect sampling and point pattern. Canadian journal of forest research, 41: 715-727.
- Besag, J., 1977. Contribution to the discussion of Dr. Ripley's paper. J. R. Stat. Soc, B (39): 193-195.
- Cipriotti, P.A. and Aguitar, M.R., 2004. Effects of grazing on patch structure in a semi-arid two-phase vegetation mosaic. J. Veg. Sci., 16: 57-66.
- Cressie, N.A.C., 1993. Statistics for spatial data. Wiley, New York, 900 p.
- Dimov, L.D., Chambers, J.L. and Lockhart, B.R., 2005. Spatial continuity of tree attributes in bottomland hardwood forests in the southeastern United States. Forest science, 51 (6): 532-540.
- Dounavi, A., Koutsias, N., Ziehe, H. and Hattemer, H., 2010. Spatial patterns and genetic structures within beech populations (Fagus sylvatica L.) of forked and non-forked individuals. European journal of forest research, 129: 1191-1202.
- Gavrikov, V. and Stoyan, D., 1995. The use of marked point processes in ecological and environmental forest studies. Environ. Eco. Stat., 2: 331-344.
- Gray, H. and He, L., 2009. Spatial point pattern analysis for detecting density dependent competition in a boreal chronosequence of Alberta. Forest ecology and management, 259: 98-106.
- Harvey, B.D., Leduc, A., Gauthier, S. and Bergeron, Y., 2002. Stand- landscape integration in natural disturbance- based management of the southern boreal forest. Forest ecology and management, 155: 369-385.
- Hao, Z., Zhang, J., Song, B., Ye, J. and Li, B., 2007. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest ecology and management, 252: 1-11.
- Kneeshaw, D.D. and Bergeron, Y., 1998. Canopy gap characteristics and tree replacement in the southeastern boreal forest. Ecology, 79: 783-794.
- Korpel, S., 1995. Die Urwälder der Westkarpaten. Gustav Fischer, Berlin. 310 p.
- Lotwick, H.W. and Silverman, B.W., 1982. Methods for analyzing spatial processes of several types of points. J. R. Stat. Soc., B 44: 406-413.
- Martinez, I., Wiegand, T., Gonzalez-Taboada, F. and Obesco, J.R., 2010. Spatial associations among tree species in a temperate forest community in North-western Spain. Forest ecology and management, 260: 456-465.
- Mitchell, A., 2005. The ESRI guide to GIS analysis. Vol. 2, ESRI press. USA. 252 p.
- Moeur, M., 1993. Characterizing spatial patterns of trees using stem- mapped data. Forest science,     39 (4): 756-775.
- Nakashizuka, T., 2001. Species coexistence in temperate, mixed deciduous forests. Trends Ecol. Evol., 16: 205-210.
- Rozas, V., Zas, R. and Solla, A., 2009. Spatial structure of deciduous forest stands with contrasting human influence in northwest Spain. European journal of forest research, 128: 273-285.
- Sagheb-Talebi, Kh. and Schütz, J-Ph., 2002. The structure of natural oriental beech (Fagus orientalis) in the Caspian region of Iran and potential for the application of the group selection system. Forestry, 75 (4): 465-472.
- Sagheb-Talebi, Kh., Delfan Abazari, B. and Namiranian, M., 2005. Regeneration process in natural uneven-aged Caspian beech forests of Iran. Swiss Forestry Journal, 156 (12): 477-480.
- Salas, C., LeMay, V., Nunez, P., Pacheco, P. and Espinosa, A., 2006. Spatial patterns in an old- growth Nothofagus obliqua forest in south-central Chile. Forest ecology and management, 231:      38-46.
- Stoll, P. and Bergius, E., 2005. Pattern and process: competition causes regular spacing of individuals within plant populations. Journal of ecology, 93: 395- 403.
- Wagner, R.G. and Radosevich, S.R., 1998. Neighborhood approach for quantifying interspecific competition in coastal Oregon forests. Ecological application, 8: 779-794.
- Weigelt, A. and Jolliffe, P., 2003. Indices of plant competition. Journal of ecology, 91: 707-720.
- Woodall, C.W. and Graham, J.M., 2004. A technique for conducting point pattern analysis of cluster plot stem- maps. Forest ecology and management, 198: 31-37.
- Zenner, E.K. and Peck, J.E., 2009. Characterizing structural conditions in mature managed red pine: spatial dependency of metrics and adequacy of plot size. Forest ecology and management, 257:       311-320.
- Zhang, Q., Zhang, Y., Peng, S., Yirdaw, E. and Wu, N., 2009. Spatial structure of Alpine trees in mountain Baima Xueshan on the southeast Tibetan plateau. Silva Fennica, 43 (2): 197-208.