مقایسه دو نوع مارکر کلروپلاستی (SSR و PCR-RFLP) در بررسی ساختار ژنتیکی جمعیتهای راش Lipsky Fagus orientalis در جنگلهای خزری

نوع مقاله: علمی- پژوهشی


عضو هیأت علمی موسسه تحقیقات جنگلها و مراتع


پلی مورفیسم DNA کلروپلاست (cpDNA) در 14 جمعیت راش (Fagus orientalis Lipsky) توسط مارکرهای PCR-RFLP و میکروساتلایتی (SSR) مطالعه شد تا تاریخچه تکاملی این گونه مهم اقتصادی- اکولوژیکی جنگلهای شمال ایران روشن گردد. دو منطقه ژنی cpDNA،  OAو DT تکثیر و به وسیله آندونوکلئازهای محدود کننده HaeIII و  HinfI هضم شده و قطعات حاصل توسط الکتروفورز ژل پلی آکریل آمید جداسازی گردیدند. قطعات محدود کننده منطقه DT هیچ پلی‌مورفیسمی در میان افراد جمعیتهای مورد مطالعه نشان نداد. در حالی که در میان افراد درون جمعیتهای مورد مطالعه منطقه اسالم و جمعیت نکا- 1400، شاهد وجود پلی‌مورفیسم در قطعات محدود کننده منطقه OA بودیم. سه هاپلوتایپ (که از نظر فیلوژنتیکی مرتب شده‌اند) در گستره توزیع این گونه مشاهده شد. میزان بالای تمایز ژنتیکی (7/68%=Gst) با ساختار جغرافیایی در گوناگونی آن برخلاف مطالعات قبلی تمایز ژنتیکی هسته ای پایین (که از مطالعات قبلی توسط مارکرهای آنزیمی بدست آمده است) نشان دهنده کم بودن جریان ژن توسط بذر در راش می‌باشد. از 9 میکروساتلایت کلروپلاستی مطالعه شده فقط 2 میکروساتلایت کلروپلاستی پلی مورفیسم نشان دادند که  براساس ترکیبهای مختلف آللهای مشاهده شده، 10 هاپلوتایپ شناسایی شد. توزیع هاپلوتیپها تمایز قابل ملاحظه ای را با ساختار جغرافیایی مشخص (Fst= 80%) نشان دادند. طبق آزمون واریانس ملکولی (AMOVA) 52% از گوناگونی کل میکروساتلایتهای کلروپلاستی به اختلافهای میان منطقه ای، 28% به تفاوتهای میان جمعیتی و 20% به اختلافهای درون جمعیتی تعلق دارد. اگرچه تنوع هاپلوئیدی مشاهده شده توسط مارکر PCR-RFLP بسیار کمتر از SSR بود. با وجود این، هر دو مارکر غنای هاپلوئیدی بالایی در بخش غربی جنگلهای راش خزری نشان دادند. غنای هاپلوتیپی بالا در جمعیتهای غربی که توسط هر دو مارکر در این بررسی مشاهده گردید تأکیدی بر این فرضیه است که سمت و سوی گسترش راش در جنگلهای خزری از غرب به شرق بوده و فاصله جغرافیایی مهمترین عامل تمایز جمعیتی در راش می‌باشد.


عنوان مقاله [English]

Comparison of PCR-RFLP and SSR chloroplast markers in study of genetic structure of beech (Fagus orientalis) populations in Hyrcanian forests

نویسنده [English]

  • Parvin Salehi Shanjani
Member of Scientific board, Research Institute of Forests and Rangelands
چکیده [English]

Chloroplast (cp) DNA polymorphism was analyzed in 14 populations of beech (Fagus orientalis Lipsky) by PCR-RFLP and microsatellite (SSR) chloroplast markers. Two cpDNA inter genic regions DT and OA were amplified and treated with HaeIII and HinfI, respectively. The restriction fragments of the region DT did not show polymorphism among individuals within any population analyzed. However, among individuals within the analyzed populations of Asalem region and Neka-1400 population, polymorphism in the restriction fragments of the OA region was found. Three haplotypes, which could be phylogenetically ordered, were detected in this survey encompassing most of the natural range of the species. The high level of genetic differentiation (Gst=%69) together with the highly structured geographic variation contrast with low level of nuclear genetic differentiation measured in previous studies with isozymes and indicate a low level of gene flow by seeds. Among nine analyzed microsatellites, two showed polymorphism. Two and six different length variants at ccmp4 and ccmp7 loci were found, respectively, which combined into 10 different haplotypes. The distribution of haplotypes showed a very strong differentiation among populations (Fst=80%) and clear geographic structure. The analysis of molecular variance (AMOVA) showed that 52, 28 and 20% of the total cpSSR variation was attributable to differences among regions, among populations within regions and within populations, respectively. Clear evidence has been obtained that geographical distance is a major factor of population differentiation in the beech. This long-range pattern of variation was partially expected, given the huge natural range of beech and the existence of a gradient of variation in ecological factors. The high haplotype richness in the western populations, which found by the both markers in this investigation, is in accordance with this hypothesis that the beech forests of the Hyrcanian regions distributed from West to East.

کلیدواژه‌ها [English]

  • beech
  • cpDNA
  • Fagus orientalis Lipsky
  • Hyrcanian zone
  • microsatellite
- پارسا پژوه، د. 1355. تحقیق روی کمیت های فیزیکی چوب های راش ایران در مناطق مختلف رویشی.  مجله منابع طبیعی ایران، 34: 21-34.

- حبیبی، ح. 1354. مطالعه وضعیت عناصر (N, P, K, Ca) خاک جنگل های راش در ایران و بررسی نقش آنها روی رشد راش. مجله منابع طبیعی ایران، 32: 47-62

- مروی مهاجر، م. 1355. برخی ویژگی های کمی جنگل های راش ایران. مجله منابع طبیعی ایران، 34: 77-97.

-Belahbib, N. Pemonge, N.H. Ouassou, A. Sbay, H. Kremer, A., Petit, R.J. 2001. Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. Ilex in Morocco. Molecular Ecology, 10: 2003-2012.

-Birky, C. W., Fuerst, P., Maruyama, T. 1989. Orangelle gene diversity under migration, and drift: Equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to unclear gens. Genetics,121: 631-627.

-Caron, H. Dumas, S. and Marque, G. 2000. Spatial and temporal distribution of chloroplast DNA polymorphism in a tropical tree species. Molecular Ecology, 9: 1089-1098.

-Demesure, B., Comps, B. and Petit, R. J. 1996. Chloroplast DNA phylogeography of the European beech (Fagus sylvatica L.) in Europe. Evolution, 50(6): 2515-2520.

-Demesure, B., Sodzi, B. N. and Petit, R. J., 1995. A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology, 4: 129-131.

-Dumolin-Lapègue, S., Demesure, B., Fineschi, S. Lecorre, V. and Petit, R. J. 1997. Phylogenetic structure of white oaks throughout the European continent. Genetics, 146: 1475-1487.

-Dutech, C. Maggia L. Joly H.I. 2000. Chloroplast diversity in Vouacapoua Americana (Caesalpiniaceae), a neotropical forest tree. Molecular Ecology, 9: 1427-1432.

-Excoffier, L. Smouse, P. Quattro, J. 1992. Analysis of molecular variances among DNA restriction data. Genetics, 131: 479-491.

-Fujii, N., Tomaru, N., Okuyama, K., Koike, T., Mikami, T., and Ueda, K., 2002. Chloroplast DNA phylogeography of Fagus Creneta (Fagaceae) in Japan. Plant Syst. Evol., 232(1-2): 21-33.

-Gömöry, D., Vyšny, J. and Paule, L. 1995. Genetic differentiation of populations in the transition zone between Fagus sylvatica L. and Fagus orientalis Lipsky. In: Madsen, S. (Ed.) Genetic and Silviculture of Beech. Proceeding of the 5th Beech Symposium of the IUFRO Project Group P 1.10.00, 19-24 September 1994, Mogenstrup, Denmark. Frskningsserien. 11: 238-244.

-Grivet, G., Heinze, B., Vendramin, G. G. and Petit, R. J., 2001. Genome walking with consensus primers: application to the large single copy region of chloroplast DNA. Molecular Ecology Notes 1.

-Hamilton, M.B. 1999. Tropical tree gene flow and seed dispersal. Deforestation affects the genetic structure of the surviving forest fragments. Nature, 401: 129-130.

-Marchelli, P., Gallo, L., Scholz, F. and Ziegenhagen, B.1998. Chloroplast DNA markers reveal a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. Distribution area. Theor. Appl. Genet., 97: 642-646.

-Màtyàs, G. and Sperisen, C. 2001. Chloroplast DNA polymorphisms provide evidence for postglacial re-colonisation of oaks (Quercus spp.) across the Swiss Alps. Theor. Appl. Genet., 102: 12-20.

-Mobayen, S. and Tregubov, V. 1969. The vegetative map of Iran. Publication of TehranUniversity. No. 14, 50 p.

-Mohanty, A. Martín J.P., Aguinagalde, I. 2001. A population genetic analysis of chloroplast DNA in wild populations of Prunus avium L. in Europe. Heredity, 87: 421-427.

-Paffetti, D., Vettori, C. and Giannini, R. 2001. Relict populations of Quercus calliprinos webb on Sardinia island identified by chloroplast DNA sequences. Forest Genetics, 8 (1): 1-11.

-Petit, R. J., 1999. Diversité Génétique et Historie des Populations d’ Arbres Forestiers. Dossier d’ habilitaion à diriger des recherches, Université de Paris- Sud, Université Formation de Recherche Scientifique d’ Orsay, Paris. 223p.

-Petit, R. J., Kremer, A., and Wagner, D. B. 1993. Geographic structure of chloroplasy DNA polymorphisms in European oaks. Theoretical and Appled Genetics, 87: 122-128.

-Pons, O. and  Petit, R.J., 1995. Estimation, variance and optimal sampling of gene diversity. 1. Haploid locus. Theoretical and Applied Genetics 90: 462-470.

-Pons, O., and Petit, R. J., 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 144: 1237-1245.

-Salehi Shanjani, P., Vettori, C. Giannini, R. and R.A. Khavari-nejad 2004. Intraspecific variation and geographic patterns of Fagus orientalis Lipsky chloroplast DNA. Journal of Silveae Genetica, 53: 193-197.

-Salvini, D., Anzidei, M., Fineschi, S., Malvoti, M. E., Taurchini, D. and Vendramin, G. G. 2001. Low genetic differentiation among Italian populations of Populus tremula L. (Salicacea) estimated using chloroplast PCR-RFLP and microsatellite markers. Forest Genetics. 8 (1): 81-87

-Schneider, S. Roessli, D. Excoffier L. 2000. Arlequin, Version 2000: A Software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva.

-Sebastiani, F., Carnevale, S., Vendramin, G.G. 2004. A new set of mono- and di-nucleotide chloroplast microsatellites in Fagaceae. Molecular Ecology Notes, 4: 259-261.

-Weising, K., Gardner, R.C. 1999. a set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome, 42: 9-19.