اثر مبدأ و رطوبت داخلی بذر بر کیفیت بذر بلندمازو (Quercus castaneifolia C.A.Mey.)

نوع مقاله: علمی- پژوهشی

نویسندگان

1 دانشجوی دکترای تخصصی علوم جنگل، دانشگاه تربیت مدرس

2 دانشیار، دانشکده منابع طبیعی، دانشگاه تربیت مدرس

3 دکترای جنگل‌داری، دفتر جنگل‌کاری و پارکها. سازمان جنگلها، مراتع و آبخیزداری کشور

چکیده

در این تحقیق اثر مبدأ و رطوبت داخلی بذر بر قدرت حیاتی، صفات جوانه‌زنی و بنیه بذر بلندمازو (Quercus castaneifolia) در آزمایشگاه مطالعه گردید. به این منظور 1500 بذر سالم و رسیده از سه مبدأ مختلف جنگل لوه (شمال شرق ایران) با ارتفاع از سطح دریای 400، 1000 و1600 متر، به‌ترتیب با رطوبت اولیه 8/42، 1/43 و 1/47 درصد جمع‌آوری شدند. به‌منظور شکل‌دهی رطوبت‌های داخلی 4/39%، 1/35%، 1/30% و 9/25%، بذرها حداکثر به‌مدت 7 روز در مجاورت ماده خشک‌کننده Silica gel قرار گرفتند. سپس تمامی بذرها پس از 24 ساعت آبنوشی با استفاده از طرح فاکتوریل کاملاً تصادفی با 4 تکرار، به‌مدت 30 روز در اتاق رشد (8 ساعت روشنایی، دمای C°30 و 16 ساعت تاریکی، دمای C°20) قرار داده شدند و هر دو روز یکبار بذرهای جوانه‌زده شمارش گردیدند. نتایج آشکار ساخت که در تمامی مبدأهای مورد مطالعه، کاهش رطوبت داخلی بذر باعث کاهش قدرت حیاتی، درصد، سرعت، ارزش و انرژی جوانه‌زنی و شاخص بنیه بذر شده است. بنابراین می‌توان اظهار داشت که بذر بلندمازو صرفنظر از این که از چه مبدأ جغرافیایی جمع‌آوری شده باشد دارای رفتار ذخیره‌ای ریکالسیترانت است. میانگین مقادیر حد آستانه، حد بحرانی و حد کُشنده رطوبت داخلی بذر (صرفنظر از مبدأ بذر) به‌ترتیب 5/35، 1/30 و 3/24 درصد بدست‌آمد. این مسئله نشان می‌دهد که برای جلوگیری از اُفت قدرت حیاتی بذر بلندمازو باید اقداماتی به‌عمل‌آید تا در طی مراحل مختلف جمع‌آوری، نگهداری و کاشت، رطوبت داخلی بذر از حد آستانه (5/35%) کمتر نشود. البته بذرهای با رطوبت داخلی کمتر از 5/35 درصد را نیز می‌توان استفاده کرد، اما باید توجه داشت که تا رطوبت داخلی 1/30 درصد (رطوبت حد بحرانی)، قدرت حیاتی بذرها نصف می‌شود. همچنین با توجه به این که در بذرهایی با رطوبت داخلی کمتر از 24% (رطوبت حد کُشنده بذر)، آبنوشی نیز نمی‌تواند قدرت حیاتی بذرها را احیاء کند، توصیه می‌شود از این بذرها در تولید نهال و جنگل‌کاری استفاده نشود.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of provenance and seed moisture content on seed quality of Chestnut-leaved oak (Quercus castaneifolia C. A. Mey.)

نویسندگان [English]

  • Ali Reza Ali-Arab 1
  • Mas'oud Tabari 2
  • Mohammad Ali Hedayati 3
1 Ph.D. student of forestry, University of Tarbiat Modares
2 Associate Prof., Faculty of Natural Resources, University of Tarbiat Modares
3 Ph.D. of forestry, Office of Plantation and National Parks, Forest, Range and Watershed Organization
چکیده [English]

Effects of provenance and seed moisture content (SMC) on viability, germination and vigor of chestnut-leaved oak(Quercus castaneifolia) acorns were investigated in laboratory. For this purpose, 1500 sound and mature acorns were selected from three different provenances in Loveh forest, north eastern of Iran, located in elevations of 400, 1000 and 1600 meter above sea level, with initial moisture content of 47.0%, 43.0% and 42.8%, respectively. In order to set up 5 different SMC levels (including control, 39.4%, 35.1%, 30.1% and 25.9%) in each seed provenance, acorns were dried for 7 days close to silica gel in 27°C. All dried acorns imbibed in tap water for 24h and incubated under optimum growth condition (8h light in 30°C, and 16h dark in 20°C) for 30 days using a complete randomized factorial design, with 4 replications. At the mentioned period, number of germinant, and characteristics of emerged seedlings were recorded every other day. Results showed that acorn quality decreased with seed MC reduction. So that, in all studied provenances, reduction of SMC lead to reduce seed viability, germination percent, germination speed, germination value, germination energy, and vigor index. Accordingly, it can be said that Q. castaneifolia seed apart from provenance has recalcitrant seed storage behavior. In this study, we found that threshold water content (TWC), critical water content (CWC), and lethal water content (LWC) of chestnut-leaved oak seed are %35.5, %30.1 and %24.3, respectively. Incidentally, aforesaid limits changed slightly in different provenances. Totally, in order to retain chestnut-leaved oak seed quality, the results suggest that seed technologists should retain SMC above %35.5 (TWC). Because in lower SMC, seed viability decreases gradually. So that until CWC (%30.1) half of seeds lost their viability. Furthermore, because rehydration of seeds with SMC bellow %24.3 (LWC) can not restore their viability, silviculturists and forest nursery managers should avoid sowing acorns with SMC bellow %24.0.
 

کلیدواژه‌ها [English]

  • Quercus castaneifolia
  • seed provenance
  • seed moisture content
  • Seed viability
  • Seed germination
  • Seed vigor
- ارسالی، ب.، 1378. بررسی زادآوری طبیعی گونه بلندمازو (Quercus castaneifolia) در جنگلهای حوزه نوشهر. پایان‌نامه کارشناسی ارشد جنگل‌داری، دانشگاه تربیت مدرس، 104 صفحه.

- الوانی‌نژاد، س.، طبری، م.، تقوایی، م.، اسپهبدی، ک. و حمزه‌پور، م.، 1387. بررسی اثر محتوای رطوبتی بذر بر جوانه‌زنی و بنیه بذر بلوط ایرانی (.Lindl Quercus brantii). فصلنامه تحقیقات جنگل و صنوبر، 16 (4): 582-574.

- ثابتی، ح.، 1381. جنگلها، درختان و درختچه‌های ایران. انتشارات دانشگاه یزد. 806 صفحه.

- بی‌نام، 1382. کتابچه تجدیدنظر طرح جنگل‌داری لوه (دهساله پنجم)- سری 2 (نالین). اداره کل منابع طبیعی استان گلستان، 582 صفحه.

- جلالی، غ. و حسینی، م.، 1379. بررسی آثار فاکتورهای مختلف محیطی بر زادآوری طبیعی گونه بلندمازو در سوردار نور. دانشور، 31: 74-69.

- رسانه، ی.، مشتاق کهنمویی، م.ح. و صالحی، پ.، 1380. بررسی کمی و کیفی جنگلهای شمال کشور. مجموعه مقالات همایش ملی مدیریت جنگلهای شمال کشور و توسعه پایدار، جلد 1: 82-56.

- ماریجا، ن.، 1382. کتاب آموزشی آنالیز آماری داده‌ها با SPSS 11.0. ترجمه فتوحی، ا. و اصغری، ف.، انتشارات کانون نشر علوم، 612 صفحه.

- مصداقی، م.، 1383. روشهای رگرسیون در تحقیقات کشاورزی و منابع طبیعی. انتشارات آستان قدس رضوی، 290 صفحه.

- مظفریان، و.، 1383. درختان و درختچه‌های ایران. انتشارات فرهنگ معاصر، 1003 صفحه.

- مهاجر، ن.، 1378. بررسی مناسبترین روش بذرکاری و بذرپاشی بلوط بلندمازو (Quercus castaneifolia) جهت زادآوری تکمیلی در طرح جنگل‌داری لوه. گزارش نهایی طرح تحقیقاتی، مؤسسه تحقیقات جنگلها و مراتع کشور، 21 صفحه.

- میرکاظمی، ز.، 1380. فنولوژی گونه بلوط بلندمازو و نقش آن در مدیریت جنگل. مجموعه مقالات همایش ملی مدیریت جنگلهای شمال و توسعه پایدار، جلد 2: 297-277.

- هدایتی، م.، 1370. بلوط، معرفی و کاشت. دفتر جنگلکاری و پارکهای سازمان جنگلها و مراتع کشور، 91 صفحه.

- Benech-Arnold, R.L. and Sanchez, R.A., 2004. Handbook of Seed Physiology: Applications to Agriculture. Food production press, 480 p.

- Berjak, P. and Pammenter, N.W., 2003. Understanding and handling desiccation sensitive seeds. In: Smith R.D., Dickie J.B., Linington S.H., Pritchard, H.W. and Probert, R.J., (eds.). Seed conservation: turning science into practice. London: The Royal Botanic Gardens, Kew: 415-430.

- Bewley, J.D., 1995. Physiological aspects of desiccation tolerance: a retrospect. International Journal of Plant Sciences, 156: 393-403.

- Bonner, F.T., 1986. Good seed quality-How to obtain it and keep it. United States Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, General Technical Report, RM-137: 31-36.

- Bonner, F.T., 1996. Responses to drying of recalcitrant seeds of Quercus nigra L. Annals of Botany, 78: 181-187.

- Bonner, F.T. and Vozzo, J.A., 1987. Seed biology and technology of Quercus. Southern Forest Experiment Station. General Technical Report, SO-66, 26 p.

- Brosofske, K.D., Chen, J. and Crow, T.R., 2001. Understory vegetation and site factors implications for a managed Wisconsin landscape. Forest Ecology and Management, 146: 75-87.

- Buitink, J., Hoekstra, F.A. and Leprince, O., 2002. Biochemistry and biophysics of desiccation tolerance systems, In: Black, M. and Pritchard, H.W. (eds.). Desiccation and survival in plants. Drying without dying. CABI Publishing, Wallingford, Oxon, UK: 293-318.

- Cavender-Bares, J., Kitajima, K. and Bazzaz, F.A., 2004. Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecological Monographs, 74 (4): 635-662.

- Connor, K.F., 2004. Update on Oak seed quality research: Hardwood recalcitrant seeds. USDA Forest service proceedings RMRS-P-33: 111-116.

- Connor, K.F., and Sowa, S., 2004. The physiology and biochemistry of desiccating white oak and Cherrybark Oak acorns. Proceedings of the 12th biennial southern silvicultural research conference, General Technical Report, SRS–71. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station: 473-477.

- Daws, M.I., Garwood, N.C. and Pritchard, H.W., 2006. Prediction of desiccation sensitivity in seeds of woody species: A probabilistic model based on two seed traits and 104 species. Annals of Botany, 97: 667-674.

- Dussert, S., Chabrillange, N., Engelmann, F. and Hamon, S., 1999. Quantitative estimation of seed desiccation sensitivity using a quantal response model: application to nine species of the genus Coffea L. Seed Science Research, 9: 135–144.

- Dytham, C. 1999. Choosing and Using Statistic, A Biologist's Guide. Black Well Publication, 218 p.

- Gold, K. and Fiona, H., 2008. Identifying desiccation-sensitive seeds. Millennium Seed Bank Project, Board of Trustees of the Royal Botanic Gardens, Kew, 2 p.

- Goodman, R.C., Jacobs, D.F. and Karrfalt, R.P., 2005. Evaluating desiccation sensitivity of Quercus rubra acorns using X-ray image analysis. Canadian Journal for Forest Research, 35: 2823-2831.

- Gupta, P.C., 1993. Seed vigor testing. In: Agrawal, P.K. (ed.). Handbook of Seed Testing, Ministry of Agriculture, GOI, New Delhi: 242-249.

- Hoekstra, F.A., Golovina, E.A. and Buitink, J., 2001. Mechanisms of plant desiccation tolerance. Trends in Plant Sciences, 5: 431-438.

- Hong, T.D. and Ellis, R.H., 1996. A protocol to determine seed storage behavior. IPGRI Technical Bulletin, NO:1, 62 p.

- Hong, T.D., Linington, S. and Ellis, R.H., 1996. Seed Storage Behavior: A Compendium. IPGRI, Handbooks for Genebanks, NO: 4, 104 p.

- Ingram, I. and Bartels, D., 1996. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Molecular Biology, 47: 377-403.

- ISTA, 2008. The International Rules for Seed Testing. The International Seed testing Association, 138 p.

- Kjaer, E.D., Hansen, C.P., Roulund, H. and Graudal, L., 2005. Procurement of plant material of good genetic quality. In: Stanturf, J.A. and Madsen, P. (eds.). Restoration of boreal and temperate forests, CRC press: 139-171.

- Leprince, O., 2003. Assessing desiccation sensitivity: from diagnosis to prognosis. In: Smith R.D., Dickie J.B., Linington S.H., Pritchard, H.W. and Probert, R.J., (eds.). Seed conservation: turning science into practice, London: The Royal Botanic Gardens, Kew: 389-414.

- Leprince, O., Hendry, G.A.F. and McKersie, B.D., 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Science Research, 3: 231-246.

- Leprince, O., van Aelst, A.C., Pritchard, H.W. and Murphy, D.J., 1998. Oleosins prevent oil-body coalescence during seed imbibition as suggested by a low temperature scanning electron microscope study of desiccation-tolerant and sensitive oilseeds. Planta, 204: 109-119.

- Leprince, O., Hoekstra, F.A. and Harren, F.J.M., 2000. Unraveling the response of metabolism to dehydration point to a role for cytoplasmic viscosity in desiccation tolerance. In: Black, M., Bradford, K.J. and Vazquez-Ramos, J., (eds.). Seed biology: Advances and applications, CAB International: 57-66.

- Noli, E., Casarini, G., Urso, G. and Conti, S., 2008. Suitability of three vigor test procedures to predict field performance of early sown maize seed. Seed Science and Technology, 36: 168-176.

- Pammenter, N.W., Greggains, V., Kioko, J.I., Wesley-Smith, J., Berjak, P. and Finch-Savage, W.E., 1998. Effect of differential drying rates on viability retention of recalcitrant seeds of Ekebergia capensis. Seed Science Research, 8: 463-471.

- Pammenter, N.M. and Berjak, P., 1999. A review of recalcitrant seed physiology in relation to desiccation tolerance mechanisms. Seed Science Research, 9: 13-38.

- Panwar, P. and Bhardwaj, S.D., 2005. Handbook of Practical Forestry. Agrobios, India, 191 p.

- Pritchard, H.W. and Manger, K.R., 1990. Quantal response of fruit and seed germination rate in Quercus robur L. and Castanea sativa Mill. to constant temperatures and photon dose. Journal of Experimental Botany, 41: 1549-1557.

- Roberts, E.H., 1973. Predicting the storage life of seeds. Seed Science and Technology, 1: 499-514.

- Scheiner, S. and Gurevitch, J., 1993. Design and Analysis of Ecological Experiments. Chapman and Hall, 445 p.

- Steadman, K.J., Pritchard, H.W. and Dey, P.M., 1996. Tissue-specific Soluble Sugars in Seeds as Indicators of Storage Category. Annals of Botany, 77: 667-674.

- Struve, D.K., 1998. Seed condition of red oak: A recalcitrant North American seed. Agricultural Sciences, Piracicaba, 55: 67-73.

- Sun, W.Q. and Liang, Y., 2001. Discrete levels of desiccation sensitivity in various seeds as determined by the equilibration dehydration method. Seed Science Research, 11: 317-323.

- Vertucci, C.W. and Farrant J.M., 1995. Acquisition and loss of desiccation tolerance, In: Kigel, J. and Galili, G., (eds.). Seed development and germination. Marcel Dekker Inc.: 237-271.

- Walters, C., 1999. Levels of recalcitrance in seeds. In: Marzalina, M., Khoo, K.C., Jayanthi, N., Tsan, F.Y. and Krishnapillay, B., (eds.). Recalcitrant seeds, IUFRO Seed Symposium 1998. Forest Research Institute Malaysia, Kuala Lumpur, Malaysia: 1-13.

- Walters, C., Pammenter, N.W., Berjak, P. and Crane, J., 2001. Desiccation damage, accelerated ageing and respiration in desiccation tolerant and sensitive seeds. Seed Science Research, 11: 135-148.

- Wheater, C.P. and Cook, P.A., 2002. Using Statistics to Understand the Environment. Routledge Publication, 245 p.

- Willan, R.L., 1985. A guide to forest seed handling with special reference to the tropics. Food and Agriculture Organization of the United Nations Forestry Papers, 20 (2): 379 p.

- Yilmaz, M., 2007. Depth of Dormancy and Desiccation Tolerance in Acer trautvetteri Medv. Seeds. Turkish Journal of Agriculture and Forestry, 31: 1-5.

- Zar, J.H., 1999. Biostatistical Analysis. Prentice Hall International Inc., 660 p.