برآورد سهم صخره و سنگ در خاکبرداری جاده‌های جنگلی با استفاده از رگرسیون لجستیک رتبه‌ای و فرایند تحلیل سلسله مراتبی

نوع مقاله: علمی- پژوهشی

نویسندگان

1 دانشجوی دکتری جنگل‌داری، دانشکده منابع طبیعی و علوم دریایی دانشگاه تربیت مدرس

2 استادیار، دانشکده منابع طبیعی و علوم دریایی دانشگاه تربیت مدرس

3 دانشیار، دانشکده فنی دانشگاه تهران

4 دانشیار، گروه مهندسی جنگل، دانشگاه ایالتی اورگان، کوروالیس، ایالات متحده آمریکا

چکیده

در عملیات جاده‌سازی نسبت سنگ موجود در خاک به‌طور مستقیم روی قیمت هر مترمکعب خاکبرداری تأثیر می­گذارد. بنابراین ایجاد یک چارچوب برای برآوردی قابل اعتماد از سهم سنگ پیش از طراحی شبکه جاده می­تواند به مسیرهای با خاکبرداری آسانتر و در نتیجه کم‌هزینه‌تری منجر شود. هدف پژوهش حاضر آن است که با استفاده از ماهیت رتبه‌ای تقسیم‌بندی مسیر به درجات سختی مختلف توسط کارشناسان بخش اجرا، سهم سنگ در خاک را به‌عنوان تابعی از شیب عرصه و نوع سنگ بستر با استفاده از مدل رگرسیون لجستیک رتبه‌ای معرفی نماید. به‌این‌منظور، واحد­های زمین‌شناسی به‌وسیله فرایند تحلیل سلسله مراتبی (AHP) ارزش‌دهی و به‌همراه عامل شیب وارد مدل شدند. برای بررسی اثر تغییر تابع اتصال در قدرت برازش مدل، پنج نوع تابع اتصال بکار گرفته شد. بهترین نتیجه مربوط به تابع Probit بود که بالاترین ضریب تشخیص را به‌همراه نتیجه مطلوب آزمون خطوط موازی ارائه نمود. برای نشان دادن قابلیت بکارگیری روش پیشنهادی برای پهنه‌بندی سهم سنگ، مدل ساخته شده در بخشی از جنگلهای کوهستانی شمال ایران پیاده‌سازی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Rockshare estimation in forest road excavation using the Ordinal Logistic Regression (OLR) and the Analytical Hierarchy Process (AHP)

نویسندگان [English]

  • Sma`eil Ghajar 1
  • Akbar Najafi 2
  • Ali Torabi 3
  • Kevin Boston 4
1 Ph.D. student of forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
2 Assistant professor, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
3 Associate professor, College of Engineering, University of Tehran
4 Associate professor, Dept. of Forest Engineering, Oregon State University
چکیده [English]

The rock proportion of the subsoil directly influences on the cost of embankment in forest road construction. Therefore, developing a reliable framework for rock ratio estimation prior the road planning may lead to more light excavation and less cost operation. According to the ordinal nature of hardness classes of the soil in executive branches, the purpose of present research is to model the ratio of rocks in the subsoil as a function of terrain slope and geology information using Ordinal Logistic Regression Model. To do so, first, the geological units were weighted using the Analytical Hierarchy Process (AHP). The obtained priorities and terrain slope data were feed to the model. To evaluate effects of change in link functions, five types of link functions were adapted. The results showed that the Probit function gives the best determination coefficient and parallel lines test for our model. To show the applicability of the proposed approach, the optimum model was applied to a mountainous forest in where additional forest road network should be constructed in the next periods.

کلیدواژه‌ها [English]

  • Forest road network
  • Embankment cost
  • Protrusion of rock
  • Rocky hillside
- Amemiya, T., 1985. Advanced Econometrics. Harvard University Press, Cambridge, 521 p.

- Anonymous, 2007. SPSS Base 16.0 for Windows User's Guide. SPSS Inc., Chicago, IL, 527 p.

- Anonymous, 2008. List price for the base unit, major roads, airport runways and rail infrastructure. Vice president of strategic planning and oversight, 125 p.

- Anonymous, 201. Baladeh geology map. National Geoscience Database of IRAN, www.ngdir.ir.

- Barton, N., Lien, R. and Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6 (4): 189-236.

- Bieniawski, Z.T., 1975. Case studies: prediction of rock mass behavior by the geomechanics classification. Proceeding of 2nd Australia-New Zealand Conference Geomechanics, Brisbane, Australia: 36-41.

- Brant, R., 1990. Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics, 46 (4): 1171-1178.

- Cox, D.R. and Snell, E.J., 1989. The Analysis of Binary Data. Second edition, Chapman and Hall, London, 236 p.

- Goodman, R.E., 1989. Introduction to Rock Mechanics. Second edition, Wiley, New York, 562 p.

- Hoek, E. and Bray, J.W., 1981. Rock Slope Engineering. Third edition, Institute of Mining and Metallurgy, London, 358 p.

- Hosmer, D.W. and Lemeshow, S., 2000. Applied Logistic Regression. Second edition, John Wiley and Sons Inc., New York, 373 p.

- Inaba, S., Heinimann, H.R. and Shiba, M., 2001. A Model to estimate rock excavation volume of forest roads in steep terrain conditions. Proceedings of the 112th Meeting of the Japanese Forestry Society, Japan, 2-4 April 2001.

- Kaufmann, A. and Gupta, M.M., 1988. Fuzzy Mathematical Models in Engineering and Management Science. North-Holland, Amsterdam. 337 p.

- Liu, Y.C. and Chen, C.S., 2007. A new approach for application of rock mass classification on rock slope stability assessment. Engineering Geology, 89 (1-2): 129-143.

- McCullagh, P. and Nelder, J.A., 1989. Generalized Linear Models. Second edition, Chapman and Hall, London. 532 p.

- McFadden, D., 1991. Conditional logit analysis of qualitative choice behavior. In: Zarembka, P., (Ed.). Frontiers in Econometrics. New York, Academic Press, 105 p.

- Nagelkerke, N.J.D., 1991. A note on the general definition of the coefficient of determination. Biometrika, 78 (3): 691-692.

- Pettifer, G.S. and Fookes, P.G., 1994. A revision of the graphical method for assessing the excavatability of rock. Journal of Engineering Geology, 27 (2): 145-164.

- Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York. 287 p.

- Stuckelberger, J.A., Heinimann, H.R. and Burlet, E.C., 2006. Modeling spatial variability in the life-cycle costs of low-volume forest roads. European Journal of Forest Research, 125 (4): 377-390.

- Zarembka, P., 1974. Frontiers in Economics. Academic Press, New York. 252 p.