(Fagus orientalis Lipsky)

تأثیر مساحت قطعه‌نمونه بر تخمین وزن‌های ساکت‌های توده آمیخته راش

کیسه

در چندگانه یاده‌ای، ازبایان ساختار توده از نظر تمونه‌برداری، اطلاعات مهم برای مدل‌بردار جنگل در راه‌اندازی یا پایان معارفه تنویزی و یادبودی بوم‌سازگاری‌های جنگلی فراهم می‌کند. بنابراین، تمونه‌برداری دقیق و صحیح برای بروآورد و وزن‌های ساختاری، امری اجتناب‌ناپذیر است. هدف از پژوهش پیش‌رو، بررسی تأثیر مساحت قطعه‌نمونه بر تغییراتی در بروآورد و وزن‌های ساختاری سنتی (روی زمینی) تراکم و حجم سریا در هکتار و هم‌مردانه (تعداد در خاک و قطر، حجم کل خشک‌دار و تعداد خشک‌دار (Fagus orientalis Lipsky) طوفان در هکتار) بود. این‌ها یک فهرست بسیار متنوعی از ۱۰۰نمونه واقع در هکته‌های آمیخته راش (Apache).

دست‌نخورده (شامل) به ۲۵۰ نقطه‌نمونه ۶/۷۵ هکتاری نسبت داده و اطلاعات کلی در هکته‌زدنه و خشک‌دار بررسی شد. سپس، محاسبه وزن‌های ساختاری سنتی و هم‌مردانه بروآورد قطعه‌نمونه‌های با رسالت‌های ۶/۷۵ و ۲/۲۵، ۲/۷۵، ۲/۲۵، ۲/۲۵، ۲/۲۵ هکتاری چسبانی شد. تئوری نشان داد که مقدار تغییراتی در وزن‌های ساختاری با افزایش سطح قطعه‌نمونه کاهش می‌یابد. به نظر می‌رسد تغییرات در وزن‌های ساختاری هم‌مردانه بیشتر است از وزن‌های سنتی بود. بنابراین بروآورد آنها مبتنی بر اطلاعات از قطعه‌نمونه‌های بروآورد بود. با محاسبه نسبت طوفان نمونه‌های بروآورد و وزن‌های ساختاری در سطح خاک، تعداد ۲۰ دانه میانگین مشخص شد که فهرست قطعه‌نمونه‌های کوچک ۶/۷۵، ۲/۲۵ و ۲/۲۵ هکتاری بروآورد و وزن‌های ساختاری روی زمینی، تراکم، حجم سریا و تعداد در خاک قطر در هکتار و قطعه‌نمونه‌های بروآورد ۵۶/۷۵، ۵۶/۷۵ و ۲/۲۵ هکتاری بروآورد و وزن‌های ساختاری حجم کل خشک‌دار و تعداد خشک‌دار قطر در هکتار، کارایی بهتری داشتند.

واژه‌های کلیدی: جنگل دست‌نخورده، ضریب تغییرات، مدل‌بردار جنگل یاده‌ای، وزن‌های ساختاری سنتی.

مقدمه

مدیریتی نوین به‌شکل گسترده‌ای برای اداره جنگل‌های طبیعی در سراسر دنیا مطرح شده است. از اصول عمدی

جنگل‌شناسی در مدیریت جنگل یاده‌ای می‌توان به حفظ باید داشته باشد. جنگل‌های خاک و اختلافات از نوع زبان در جنگل‌های طبیعی اشاره کرد (Emborg et al., 2000). ساختار در این رویکرد به‌عنوان یک عنصر کلیدی در فهم ساختارهای
جنسی محصول ما، زیرا ویژگی‌های مختلف ساختاری در چنگال‌های جنگلی مختلف، فاقد ممکنیت اتکاک است (Carrer et al., 2015). در انتخاب نوع طعم‌نمایی‌های هومودونیک که تمامی مناسب برای کل جامعه باشد، باید با توجه به ویژگی‌های نویس و چنگال‌های Du et al., (2015) مورد نظر ویژگی‌های توده مورد مطالعه بستگی دارد.

بررسی تغییرپذیری محلی برخی ویژگی‌های ساختاری در توده‌های اولیه جنگل‌های متنوع ساختاری روند ویژگی‌های سنی و ساختاری مانند رنگی و حجم سریا در هکتار نسبت به ویژگی‌های دیگری پیش‌بینی‌ها در درون توده، دوگره‌ای و بی‌سریا (Král et al., 2010) تغییرپذیری کمتری دارند. از سوی دیگر هر ویژگی‌های غیرمتناسب ساختاری به‌طور عموم، تغییرات زیادی در توزیع و مقادیر مکانی نشان می‌دهد، بنابراین دستیابی به باروری بدن ساختاری در سطحدار را (Zenner & Peck, 2009; Du et al.; 2010) مشکل می‌سازد.

بررسی انجام شده با استفاده از مدل فیزیو چندنجلی در ظرف جنگل‌های مختلف و ویژگی‌های ساختاری در توده‌های کافی متناسب با کاربردهای اقتصادی شاخصی، امواج ویژگی‌های ساختاری غیرمتناسب مانند غنای گونه‌ای و حضور درختان و خشکدار بی‌سیاری ترکیب درختان طور و خشکدار (Zenner & Peck, 2009) مجموع حجم درختان زند و خشکدار (Zenner et al., 2010). برای کنترل گونه‌ای نادر Du et al., (2011) و تعداد نهال و درختان طور (Corona et al., 2015) و تعداد و حجم خشکدار طور افناه و (et al., 2015) سربای (Lombardi et al., 2015) تغییرپذیری بیشتری نسبت به مشخصه‌های ساختاری سنی و ساختاری اتوبولوگی زمینی تعداد و حجم درختان در هکتار دارد. به همین دلیل، باید بر اثر این ویژگی‌های طعم‌نمایی بهترین و با تعداد خشکدار بیشتری در خشکدار نمونه‌های زیادتری مورد نیاز است. نتایج پژوهش دیگری نشان داد که برای بررسی ویژگی‌های ساختاری چنگال‌های بیک راش از رود نرمایا (Fagus sylvatica) به‌دلیل

 sauces کی مقداس کلی مناسب در مطالعات چنگال‌های بیک و مدیریت شده آرایه می‌کند (Kint et al., 2004; Malekii & Kiviste, 2015).
٣
نشریه علمی تحقیقات جنگلی و صنایع ایران جلد ۲۸ شماره

آمیخته فاقد مدیریت هستند.

مواد و روش‌ها

منطقه مورد مطالعه

طرح جنگل‌داری شامل کل کشور و در فاصله هشت کیلومتری جنوب غربی شهرستان گرگان واقع شده است. جنگل‌های سری یک این طرح در محدوده عرض جغرافیایی ۳۴°۵۶‌تا ۴۳°۵۰ شمالی و طول جغرافیایی ۴۷°۰۶‌تا ۶۱°۰۷ شرق قرار دارند. ساختن کل سری یک، ۱۷۱/۳ هکتار است که قطعه دارد. قطعه ۲۱ به مساحت ۷۹/۸ هکتار به عنوان قطعه شاهد آن در نظر گرفته شده است. کمترین، بیشترین، و متوسط ارتفاع از سطح دریا در قطعه ۲۲ و ۷۷ متر ۹۹ و ۹۲۰ متر است. این قطعه در جهت‌های عمومی شمال غربی و غربی قرار دارد. بافت خاک، مِجر و لوم، شنی، لومی و رسی، لومی است. راش-مرز به همراه انگلی، تپ.

جنگل‌های این قطعه را تشكیل داده‌اند (Amini et al., 2017; Amini et al., 2016).

روش پژوهش

به منظور پاسخگویی به پرسشنامه‌ای در قطعه های این پژوهش، قطعه بررسی دامی با مساحت ۱۶ هکتار (۴۰۰×۴۰۰ متر مربع) واقع در منطقه از قطعه ۳۲ انتخاب شد. برای سنجش در بردارنده‌العملات، سطح قطعه ۱۶ هکتاری به ۲۵ یکی تقسیم شد. این سطح یکی قطعه‌شنوند به عنوان واحد مینی باید از حساسیت یکهای میدانی انتخاب شد. در هر قطعه ۲۵×۲۵ متر مربعی، مشخصات کمی شامل تعداد درختان، قطر برگ سینه و ارتفاع کل برای تمام درختان زنده و برای برگ سینه ساوا یا بیشتر از ۶/۷۵ سانتی‌متر اندازه‌گیری شدند. همچنین، برای تعداد درختان در بیشتر از ۶/۷۵ سانتی‌متر و ارتفاع بیشتر از ۱/۲ متر، انجام شد.
مشخص شد. نقطه عطف منحنی جایی است که افزایش نسبی میزان قطعه‌نمودنی منجر به کاهش نسبی به تغییر یکسانی در ضریب تغییرات می‌شود. پیش از این نقطه، کاهش شکست و نسبی تغییرات نسبت به قطعه‌نمودنی Král et al. (2010) هم‌زمانی تغییرات نقطه عطف در قطعه‌نمودنی نسبت به میزان ضریب تغییرات فاصله منحنی بود. در این نقطه، درصد تغییرات به شکست افزایش می‌یافته و نقطه عطف منحنی به سبب کاهش شکست و تغییرات طبیعی به دو سطح افزایش یافته است که پس از این نقطه، درصد تغییرات نمودار به تقریب یکنواخت می‌شود (Erfani Fard et al., 2007). همچنین، برای محاسبه تعداد قطعه‌نمودنی‌های مورد نیاز (n) برای تخمین میانگین در درون خطای d و با سطح احتمال α از رابطه 1 استفاده شد (Zar, 1996):

\[n = \frac{S^2 \cdot t^2 (\alpha \cdot n - 1)}{d^2} \]

رابطه (1)

که در آن: t همان t آماری است و S2 برآورد واریانس جمعیت است. برای این پژوهش، صحت قابل قبول برای برآورد ویژگی‌های ساختاری در درون قطعه‌نمودنی‌های مختلف در سطح خطای کمتری می‌باشد (Du et al., 2015).

طقتر میانه 10 سانتی‌متر و حداقل ارتفاع یک متر و ۳۰ سانتی‌متر در آنها افزایش قطعه‌نمودنی ۷/۵ سانتی‌متر در ۳۰ سانتی‌متر ۲۵ متر مربع انداده‌گیری شد. سپس، مشخص‌سازی سنتی مندول ساختاری شامل روبه‌زمینی در هکتار، تراکم درختان در هکتار و حجم درختان سریا در هکتار مشخص‌سازی غیرمندود ساختاری شامل تعداد درختان قطع در هکتار ابای قطع باربیسیه به‌نمایی ۵۰ سانتی‌متر، حجم کل شکست در هکتار و تعداد شکست در قطع در هکتار (با حداکثر قطع باربیسیه ۶۰ سانتی‌متر برای خشک‌دار سریا و حداکثر قطع میانگین ۵۰ سانتی‌متر برای خشک‌دار افتاده) در Lombardi et al., 2015 مربعی و قطعه‌نمودنی ۱۵۲۵ متر از تکیه‌بازی قطعه‌نمودنی ۲۵۰۰ متر مربعی، قطعه‌نمودنی ۱۷۵۰ متری، قطعه‌نمودنی ۲۵۰۰ متری، قطعه‌نمودنی ۳۵۰۰ متری، قطعه‌نمودنی ۳۵۰۰ متری، قطعه‌نمودنی ۴۵۰۰ متری و به‌نمایی ۵۰۰ متری) به‌نمایی ۵۰۰ متری مشخص‌سازی ساختاری مورد نظر برای قطعه‌نمودنی‌های مذکور بیشتر محاسبه شد (شکل ۱).

تجزیه و تحلیل داده‌ها

اندازه‌گیری‌های هرکدام از مشخص‌سازی‌های ساختاری مندود و غیرمندود در سطح‌های مختلف قطعه‌نمودنی با کمک شاخص درصد ضریب تغییرات بررسی شد. این شاخص امکان مقایسه تغییرات در اندام هرکدام از ویژگی‌های ساختاری در قطعه‌نمودنی‌های با سایش متفاوت را صرفه‌جویی از مقدار میانگین و نوع متغیر فراهم می‌کند (Král et al., 2010). در این پژوهش، ابتدا درصد ضریب تغییرات برای هرکدام از ویژگی‌های ساختاری و در هر میزان قطعه‌نمودنی محاسبه شد. سپس، برای هر مشخص‌سازی ساختاری، نمودار روند تغییر شاخص درصد ضریب تغییرات با افزایش سطح قطعه‌نمودنی ترسیم شد. همچنین، برای هرکدام از نمودارهای سطح درصد ضریب تغییرات و ویژگی‌های ساختاری، نقطه عطف منحنی
نتایج

آمار توصیفی ویژگی‌های ساختاری متداول و غیرمتداول برای قطعه‌نمونه‌های ۲۵×۲۵، ۷۵×۷۵، ۱۰۰×۱۰۰ متر مربعی در جدول ۱ ارائه شده است. بیشینه و درصد ضریب تغییرات برای تمام مشخصه‌های مورد بررسی با افزایش مساحت قطعه‌نمونه کاهش نشان داد. در حالی که کمینه تمام مشخصه‌های مورد بررسی با افزایش مساحت قطعه‌نمونه، افزایش داشت. بیشترین تغییرات در برآورد ویژگی‌های ساختاری در کوچک‌ترین قطعه‌نمونه مشاهده شد. این تغییرات با افزایش سطح قطعه‌نمونه، روند کاهشی داشت، اما میزان کاهش تغییری‌ها برای ویژگی‌های مختلف متداول بود. به طور کلی، مشخصه‌های سنین ساختاری شامل روی زمینی، تراکم درختان و حجم سریا در هکتار، تغییرات کمتری نسبت به ویژگی‌های غیرمتداول ساختاری شامل تعداد درختان قطر، حجم کل خشکدار و تعداد خشکدار قطر در هکتار، نقطه عطف در سطح قطعه‌نمونه ۰/۳۷۵ هکتاری محاسبه شد. همانطور که مشاهده می‌شود، شیب منحنی در نمودارهای مورد بررسی، بیش از رضیان به نطقه عطف بسرعت کاهش می‌یابد، اما پس از رسیدن به نقطه عطف از روندی به تغییری یکتاییت پیروی می‌کند.
<table>
<thead>
<tr>
<th>Width (mm) x Height (mm)</th>
<th>Digit</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 x 25</td>
<td>8</td>
<td>48</td>
<td>50 x 25</td>
<td>8</td>
<td>48</td>
<td>75 x 50</td>
<td>8</td>
<td>48</td>
<td>100 x 75</td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>30 x 30</td>
<td>8</td>
<td>48</td>
<td>55 x 50</td>
<td>8</td>
<td>48</td>
<td>100 x 100</td>
<td>8</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 x 35</td>
<td>8</td>
<td>48</td>
<td>60 x 50</td>
<td>8</td>
<td>48</td>
<td>105 x 100</td>
<td>8</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 x 40</td>
<td>8</td>
<td>48</td>
<td>65 x 50</td>
<td>8</td>
<td>48</td>
<td>110 x 110</td>
<td>8</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV (%): Coefficient of Variation (%)
تعداد قطعه‌نموده‌های لازم برای پردازش وسایل نیاز به یک میانگین سالانه به‌طور متوسط ۱۵۰ درصد تغییرات برای ویژگی‌های سنتی و غيرسنتی ساختاری با تغییر نقاط عطف منحنی

قطعه‌نموده‌های مورد نیاز برای برآورد مناسب ویژگی‌های غیرسنتی ساختاری به‌ویژه برای مشخصه‌های حجم کل خشک‌دار و تعداد خشک‌دار که بیشترین ضریب تغییرات را داشته، جنین برای پیشرفت و افزایش قطعه‌نموده‌های سنتی ساختاری محاسبه شد. به‌عنوان نمونه، تعداد قطعه‌نمودنی لازم برای برآورد ویژگی حجم خشک‌دار در هکتار در سطح قطعه‌نموده ۲۶۵/۰/۰/۰/۰۱۲ برای پیشرفت از قطعه‌نموده‌های مورد نیاز برای ویژگی رویه زمینی در هکتار به‌دست آمد. برای پیش‌بینی نتایج جدول ۲ و ویژگی‌های سنتی ساختاری رویه زمینی و حجم در هکتار را می‌توان به‌ترتیب

شکل ۳- نمودارهای سطح قطعه‌نموده درصد ضریب تغییرات برای ویژگی‌های سنتی و غیرسنتی ساختاری با تغییر نقاط عطف منحنی

تعداد قطعه‌نموده‌های مورد نیاز و مساحت کل قطعه‌نموده‌های مورد نیاز برای برآورد ویژگی‌های سنتی و غیرسنتی ساختاری در نمونه‌های برآورد و یک میانگین و در سطح اطمینان ۹۵ درصد برای هر کدام از سطح‌های قطعه‌نموده‌های محاسبه شد (جدول ۲). نتایج این محاسبه نشان داد که تعداد قطعه‌نموده‌های لازم برای برآورد هر کدام از ویژگی‌های ساختاری با افزایش سطح قطعه‌نموده کاهش می‌یافت. با افزایش سطح قطعه‌نموده کاهش تعداد قطعه‌نموده‌ها در سطح‌های کوچکتر بسیار سریع اتفاق می‌افتد، اما در سطح‌های بزرگتر، این کاهش تدریجی بود تعداد
بیان
نتایج پژوهش پیش رو نشان داد که ویژگی سنتی رویه زمینی در هکتار از نظر کمترین و بیشترین مقدارهای به دست آمده، کمترین تغییراتی را نسبت به ویژگی های مورد مطالعه دیگر داشت. تغییرات عطف این منشأش در مساحت 25 هکتاری تعیین شد. بطور عادی، مقدار ویژگی های مورد نیاز برای برآورد این ویژگی در هکتار از نظر کمترین تغییرات در مقایسه با دو ویژگی ساختاری سنتی دیگر نشان داد. وجود اینکه در ابتدا ضریب تغییرات در کوچکترین قطعه‌نمونه (75/0) و در بررسی قطعات (75/0-0) هکتاری بیشتر داشتند.

جدول ۲- کمترین تعداد قطعه‌نمونه مورد نیاز برای برآورد ویژگی ساختاری در سطح‌های مختلف قطعه‌نمونه

<table>
<thead>
<tr>
<th>ابعاد قطعه‌نمونه (متر مربع)</th>
<th>مساحت قطعه‌نمونه (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100×100</td>
<td>0/75</td>
</tr>
<tr>
<td>75×100</td>
<td>0/75</td>
</tr>
<tr>
<td>50×100</td>
<td>0/75</td>
</tr>
<tr>
<td>25×100</td>
<td>0/75</td>
</tr>
<tr>
<td>125×25, 100×75</td>
<td>0/75</td>
</tr>
<tr>
<td>625×25, 500×25</td>
<td>0/75</td>
</tr>
<tr>
<td>3125×25, 2500×25</td>
<td>0/75</td>
</tr>
<tr>
<td>1250×25, 1000×75</td>
<td>0/75</td>
</tr>
<tr>
<td>6250×25, 5000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>31250×25, 25000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>12500×25, 10000×75</td>
<td>0/75</td>
</tr>
<tr>
<td>62500×25, 50000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>312500×25, 250000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>125000×25, 100000×75</td>
<td>0/75</td>
</tr>
<tr>
<td>625000×25, 500000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>3125000×25, 2500000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>1250000×25, 1000000×75</td>
<td>0/75</td>
</tr>
<tr>
<td>6250000×25, 5000000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>31250000×25, 25000000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>12500000×25, 10000000×75</td>
<td>0/75</td>
</tr>
<tr>
<td>62500000×25, 50000000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>312500000×25, 250000000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>125000000×25, 100000000×75</td>
<td>0/75</td>
</tr>
<tr>
<td>625000000×25, 500000000×25</td>
<td>0/75</td>
</tr>
<tr>
<td>3125000000×25, 2500000000×25</td>
<td>0/75</td>
</tr>
</tbody>
</table>

* ویژگی‌های سنتی بیشتر ساختاری و/یا ویژگی‌های غیرمدل ساختاری

هکتاری مختاری یودنده. در رابطه با دو ویژگی غیرساختاری ساختاری حجم کل خشکدار و تعداد خشکدار فطور در هکتار نیاز به اندازه‌گیری و تعداد مساحت قطعه‌برداری گرفتن در هکتار و ویژگی غیرمدل ساختاری تعداد خشکدار فطور در هکتار، به‌طور کلی مساحت قطعه‌برداری و ۱۲۵ هکتاری در این مسیر قطعه‌نمونه‌های کوچک ۷۵۸/۰ و ۷۵۸/۰ هکتاری.
et al., Král 2010

Carrer et al., 2018

Fallah et al., 2018
یکی از فلسفه‌شناسان که در زمینه زبان درمان‌کننده از پیشنهاد دانشمندان معروف مانند دویک، لامبردی و زننر تأکید کرده‌اند، دکتر برای مثال از تأثیر مصرف این ماده بر روی زبان درمان‌کننده، پژوهشکاران قرارداده‌اند که این بخش از زبان درمان‌کننده، می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کند. این موضوع محکوم به‌شکلی است که این می‌تواند بهبود مراحل فشرده‌سازی عقلانی و ذهنی فرد را تضمین کرد.

Impact of plot area on structural attributes estimation in a mixed beech (*Fagus orientalis* Lipsky) stand

S.S. Nourolahi 1, R. Rahmani 2*, H. Habashi 3 and D. Castagneri 4

1- Ph.D. Student of Silvicultural and Forest Ecology, Faculty of Forest Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2* - Corresponding author, Associate Prof., Faculty of Forest Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail: rahmani@gau.ac.ir
3- Associate Prof., Faculty of Forest Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4- Postdoc Researcher, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

Received: 30.12.2019 Accepted: 14.03.2020

Abstract

In continuous cover forestry, the evaluation of forest structure by sampling plots is an important source of information for monitoring biodiversity and resistance criteria in forest ecosystems. Therefore, a precise and accurate sampling design to estimate the structural attributes is required. This study aimed to investigate the impact of plot area on variability and estimates of 1) traditional structural attributes including basal area, density and volume of living trees, and 2) unconventional structural attributes including the number of large trees, total deadwood volume, and the number of large deadwood elements. For this purpose, a 16-ha permanent research plot was divided into 256 0.0625-ha plots, in which all information on living trees and deadwoods was collected. Then, the traditional and unconventional structural attributes were calculated for all sample plots of different sizes (0.0625, 0.125, 0.25, 0.375, 0.5625, 0.75, and 1 ha), followed by calculating the coefficient of variation for each attribute. The results showed that the variability of the structural attributes decreased with increasing plot area. The coefficient of variation on unconventional structural attributes is generally higher than traditional attributes. By calculating the minimal number of plots within a 20% mean error, it was found that the small plots (0.026 and 0.125 ha) are more appropriate for estimating the structural attributes including basal area, density, the volume of living trees, and the number of large trees. Moreover, large plots (0.5625, 0.75, and 1 ha) are more effective to estimate the structural attributes including total deadwood volume and the number of large deadwood elements.

Keywords: Coefficient of variation, continuous cover forest management, intact forest, traditional structural attributes.